All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Autonomous Noetherian boundaryvalue problem in special critical case
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 337-351Views (last year): 4. Citations: 1 (RSCI).The necessary and sufficient terms of solution existence of nonlinear autonomous Noetherian boundary-value problem are found in special critical case. The characteristic feature of the set problems is impossibility of direct application of traditional research schematic representation and construction of solutions of critical boundary-value problems, which was created in works of I.G. Malkin, A.M. Samoilenko, E.A. Grebenikov, Yu.A. Ryabov and A.A. Boichuk. For the solution construction of Noetherian boundary-value problem in special critical case an iterative procedure is recommended, it is constructed according to the scheme of least-squares method. Efficiency of the offered technique is shown on the example of analysis for periodic problems for Hill equation.
-
Galerkin–Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
Computer Research and Modeling, 2013, v. 5, no. 1, pp. 3-10Views (last year): 2.In the current paper, we study a Galerkin–Petrov method for a parabolic equations of higher order in domain with a moving boundary. Asymptotic estimates for the convergence rate of approximate solutions are obtained.
-
Linear Noether boundary value problem for linear differential-algebraic system
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 769-783Views (last year): 1. Citations: 7 (RSCI).We find sufficient conditions for the solvability and construction of the generalized Green’s operator for linear Noether boundary value problem for linear differential-algebraic system.
-
Correct conditions on the boundary separating subdomains
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 347-356Views (last year): 2. Citations: 2 (RSCI).This paper presents definition and solution problem of correct conditions on the boundary, separating subdomains for hyperbolic linear equation systems. The solution algorithm is demonstrated by means of an example system of elastodynamic equations for two spatial variables. Stated approach can be easily expanded on systems of first-order linear hyperbolic equations with random number of spatial variables.
-
Boundary value problems for differential-algebraic systems with interface conditions
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 465-477Views (last year): 5.We find sufficient conditions for the solvability and construction of the generalized Green’s operator for linear Noether boundary value problem for degenerate linear differential-algebraic system with interface conditions.
-
Neumann's method to solve boundary problems of elastic thin shells
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1143-1153Views (last year): 3.This paper studies possibilities to use Neumann's method to solve boundary problems of elastic thin shells. Variational statement of statical problems for shells allows examining the problems within the space of distributions. Convergence of the Neumann's method is proved for the shells with holes when the boundary of the domain is not completely fixed. Numerical implementation of the Neumann's method normally takes a lot of time before some reliable results can be achieved. This paper suggests a way to improve convergence of the process and allows for parallel computing and checkout procedure during calculations.
-
Numerical approach and parallel implementation for computer simulation of stacked long Josephson Junctions
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 593-604Views (last year): 7. Citations: 6 (RSCI).We consider a model of stacked long Josephson junctions (LJJ), which consists of alternating superconducting and dielectric layers. The model takes into account the inductive and capacitive coupling between the neighbor junctions. The model is described by a system of nonlinear partial differential equations with respect to the phase differences and the voltage of LJJ, with appropriate initial and boundary conditions. The numerical solution of this system of equations is based on the use of standard three-point finite-difference formulae for discrete approximations in the space coordinate, and the applying the four-step Runge-Kutta method for solving the Cauchy problem obtained. Designed parallel algorithm is implemented by means of the MPI technology (Message Passing Interface). In the paper, the mathematical formulation of the problem is given, numerical scheme and a method of calculation of the current-voltage characteristics of the LJJ system are described. Two variants of parallel implementation are presented. The influence of inductive and capacitive coupling between junctions on the structure of the current-voltage characteristics is demonstrated. The results of methodical calculations with various parameters of length and number of Josephson junctions in the LJJ stack depending on the number of parallel computing nodes, are presented. The calculations have been performed on multiprocessor clusters HybriLIT and CICC of Multi-Functional Information and Computing Complex (Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna). The numerical results are discussed from the viewpoint of the effectiveness of presented approaches of the LJJ system numerical simulation in parallel. It has been shown that one of parallel algorithms provides the 9 times speedup of calculations.
-
On spectral properties of a nonselfadjoint difference operator
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 143-150The eigenvalue problem for a nonselfadjoint difference operator with nonconstant coefficient is considered. The main peculiarity of the problem is that its solution satisfies a two-point nonlocal boundary condition. Multiplicity of eigenvalues is discussed and a region where all eigenvalues reside is defined taking into account a very generic assumption about the nonconstant coefficient.
Keywords: eigenvalue problem, nonselfadjoint difference operator.Views (last year): 1. Citations: 2 (RSCI). -
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 721-753Views (last year): 9. Citations: 1 (RSCI).Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.
-
Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 2
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 547-566Views (last year): 6.The second part of paper is devoted to final study of three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Specificity of this solution has been shown by different examples, which are related to the hexagonal grid. Also the next statements that are mentioned in the first part have been proved: the matter conservation law and the offensive effect of excessive hexagonal symmetry.
From the point of CA view diffusion equation is the most important. While solving of diffusion equation at the infinite time interval we can find solution of boundary value problem of Laplace equation and if we introduce vector-variable we will solve wave equation (at least, for scalar). The critical requirement for the sampling of the boundary conditions for CA-cells has been shown during the solving of problem of circular membrane vibrations with Neumann boundary conditions. CA-calculations using the simple scheme and Margolus rotary-block mechanism were compared for the quasione-dimensional problem “diffusion in the half-space”. During the solving of mixed task of circular membrane vibration with the fixed ends in a classical case it has been shown that the simultaneous application of the Crank–Nicholson method and taking into account of the second-order terms is allowed to avoid the effect of excessive hexagonal symmetry that was studied for a simple scheme.
By the example of the centrally symmetric Neumann problem a new method of spatial derivatives introducing into the postfix CA procedure, which is reflecting the time derivatives (on the base of the continuity equation) was demonstrated. The value of the constant that is related to these derivatives has been empirically found in the case of central symmetry. The low rate of convergence and accuracy that limited within the boundaries of the sample, in contrary to the formal precision of the method (4-th order), prevents the using of the CAmethods for such problems. We recommend using multigrid method. During the solving of the quasi-diffusion equations (two-dimensional CA) it was showing that the rotary-block mechanism of CA (Margolus mechanism) is more effective than simple CA.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"