All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Migration processes modelling: methods and tools (overview)
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.
Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.
The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.
-
Coherent constant delay transceiver for a synchronous fiber optic network
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 141-155This paper proposes the implementation of a coherent transceiver with a constant delay and the ability to select any clock frequency grid used for clocking peripheral DACs and ADCs, tasks of device synchronization and data transmission. The choice of the required clock frequency grid directly affects the data transfer rate in the network, however, it allows one to flexibly configure the network for the tasks of transmitting clock signals and subnanosecond generation of sync signals on all devices in the network. A method for increasing the synchronization accuracy to tenths of nanoseconds by using digital phase detectors and a Phase Locked Loop (PLL) system on the slave device is proposed. The use of high-speed fiber-optic communication lines (FOCL) for synchronization tasks allows simultaneously exchanging control commands and signaling data. To simplify and reduce the cost of devices of a synchronous network of transceivers, it is proposed to use a clock signal restored from a data transmission line to filter phase noise and form a frequency grid in the PLL system for heterodyne signals and clock peripheral devices, including DAC and ADC. The results of multiple synchronization tests in the proposed synchronous network are presented.
-
A novel method of stylometry based on the statistic of numerals
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 837-850A new method of statistical analysis of texts is suggested. The frequency distribution of the first significant digits in numerals of English-language texts is considered. We have taken into account cardinal as well as ordinal numerals expressed both in figures, and verbally. To identify the author’s use of numerals, we previously deleted from the text all idiomatic expressions and set phrases accidentally containing numerals, as well as itemizations and page numbers, etc. Benford’s law is found to hold approximately for the frequencies of various first significant digits of compound literary texts by different authors; a marked predominance of the digit 1 is observed. In coherent authorial texts, characteristic deviations from Benford’s law arise which are statistically stable significant author peculiarities that allow, under certain conditions, to consider the problem of authorship and distinguish between texts by different authors. The text should be large enough (at least about 200 kB). At the end of $\{1, 2, \ldots, 9\}$ digits row, the frequency distribution is subject to strong fluctuations and thus unrepresentative for our purpose. The aim of the theoretical explanation of the observed empirical regularity is not intended, which, however, does not preclude the applicability of the proposed methodology for text attribution. The approach suggested and the conclusions are backed by the examples of the computer analysis of works by W.M. Thackeray, M. Twain, R. L. Stevenson, J. Joyce, sisters Bront¨e, and J.Austen. On the basis of technique suggested, we examined the authorship of a text earlier ascribed to L. F. Baum (the result agrees with that obtained by different means). We have shown that the authorship of Harper Lee’s “To Kill a Mockingbird” pertains to her, whereas the primary draft, “Go Set a Watchman”, seems to have been written in collaboration with Truman Capote. All results are confirmed on the basis of parametric Pearson’s chi-squared test as well as non-parametric Mann –Whitney U test and Kruskal –Wallis test.
Keywords: text attribution, first significant digit of numerals.Views (last year): 10. -
Additive regularizarion of topic models with fast text vectorizartion
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1515-1528The probabilistic topic model of a text document collection finds two matrices: a matrix of conditional probabilities of topics in documents and a matrix of conditional probabilities of words in topics. Each document is represented by a multiset of words also called the “bag of words”, thus assuming that the order of words is not important for revealing the latent topics of the document. Under this assumption, the problem is reduced to a low-rank non-negative matrix factorization governed by likelihood maximization. In general, this problem is ill-posed having an infinite set of solutions. In order to regularize the solution, a weighted sum of optimization criteria is added to the log-likelihood. When modeling large text collections, storing the first matrix seems to be impractical, since its size is proportional to the number of documents in the collection. At the same time, the topical vector representation (embedding) of documents is necessary for solving many text analysis tasks, such as information retrieval, clustering, classification, and summarization of texts. In practice, the topical embedding is calculated for a document “on-the-fly”, which may require dozens of iterations over all the words of the document. In this paper, we propose a way to calculate a topical embedding quickly, by one pass over document words. For this, an additional constraint is introduced into the model in the form of an equation, which calculates the first matrix from the second one in linear time. Although formally this constraint is not an optimization criterion, in fact it plays the role of a regularizer and can be used in combination with other regularizers within the additive regularization framework ARTM. Experiments on three text collections have shown that the proposed method improves the model in terms of sparseness, difference, logLift and coherence measures of topic quality. The open source libraries BigARTM and TopicNet were used for the experiments.
-
XFEL diffraction patterns representation method for classification, indexing and search
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 631-639Views (last year): 6.The paper presents the results of application of machine learning methods: principle component analysis and support vector machine for classification of diffraction images produced in experiments at free-electron lasers. High efficiency of this approach presented by application to simulated data of adenovirus capsid and bluetongue virus core. This dataset were simulated with taking into account the real conditions of the experiment on lasers free electrons such as noise and features of used detectors.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"