All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
CABARET scheme implementation for free shear layer modeling
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903Views (last year): 17.In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.
The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods
-
Collective influence of impurities on the dynamics of kinks of modified sine-Gordon equation
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 403-412Views (last year): 1. Citations: 3 (RSCI).We investigated numerically the dynamics of kinks of modified sine-Gordon equation in the model with localized spatial modulation of a periodic potential (or impurity). We considered the case of two identical impurities. We showed the possibility of collective effects of the influence of impurities, which are heavily dependent on the distance between them. We demonstrated the existence of a certain critical value of the distance between impurities, which has two qualitatively different scenarios of the dynamic behavior of kink.
-
Mathematical modeling of dinuclear systems in low energy nuclear reactions
Computer Research and Modeling, 2010, v. 2, no. 4, pp. 385-392Views (last year): 2.Numerical methods of obtaining collective and one-particle states were used for the quantum description of two-nuclear systems behavior at the initial stage of near-barrier heavy nuclei fusion. The collective exited states in such systems represent concordant oscillations of surfaces of spherical nuclei. The one-particle states of the external neutrons are similar to the states of valence electrons of diatomic molecules.
-
Superscale simulation of the magnetic states and reconstruction of the ordering types for nanodots arrays
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 309-318Views (last year): 2.We consider two possible computational methods of the interpretation of experimental data obtained by means of the magnetic force microscopy. These methods of macrospin distribution simulation and reconstruction can be used for research of magnetization reversal processes of nanodots in ordered 2D arrays of nanodots. New approaches to the development of high-performance superscale algorithms for parallel executing on a supercomputer clusters for solving direct and inverse task of the modeling of magnetic states, types of ordering, reversal processes of nanosystems with a collective behavior are proposed. The simulation results are consistent with experimental results.
-
Simulation of corruption in hierarchical systems
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 321-329Views (last year): 8. Citations: 11 (RSCI).Simulation model of corruption in hierarchical systems which takes into account individual strategies of elements and collective behavior of large groups is proposed. Evolution of various characteristics like level of corruption or ratio of corrupted elements and their dependence on external parameters are discussed. The effectiveness of various anticorruptional strategies is examined by means of numeric analysis.
-
Modeling of behavior of panicked crowd in multi-floor branched space
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 491-508Views (last year): 7. Citations: 10 (RSCI).The collective behavior of crowd leaving a room is modeled. The model is based on molecular dynamics approach with a mixture of socio-psychological and physical forces. The new algorithm for complicatedly branched space is proposed. It suggests that each individual develops its own plan of escape, which is stochastically transformed during the evolution. The algorithm includes also the separation of original space into rooms with possible exits selected by individuals according to their probability distribution. The model is calibrated on the base of empirical data provided by fire case in the nightclub “Lame Horse” (Perm, 2009). The algorithm is realized as an end-user Java software. It is assumed that this tool could help to test the buildings for their safety for humans.
-
Simulation of traffic flows based on the quasi-gasdynamic approach and the cellular automata theory using supercomputers
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 175-194The purpose of the study is to simulate the dynamics of traffic flows on city road networks as well as to systematize the current state of affairs in this area. The introduction states that the development of intelligent transportation systems as an integral part of modern transportation technologies is coming to the fore. The core of these systems contain adequate mathematical models that allow to simulate traffic as close to reality as possible. The necessity of using supercomputers due to the large amount of calculations is also noted, therefore, the creation of special parallel algorithms is needed. The beginning of the article is devoted to the up-to-date classification of traffic flow models and characterization of each class, including their distinctive features and relevant examples with links. Further, the main focus of the article is shifted towards the development of macroscopic and microscopic models, created by the authors, and determination of the place of these models in the aforementioned classification. The macroscopic model is based on the continuum approach and uses the ideology of quasi-gasdynamic systems of equations. Its advantages are indicated in comparison with existing models of this class. The model is presented both in one-dimensional and two-dimensional versions. The both versions feature the ability to study multi-lane traffic. In the two-dimensional version it is made possible by introduction of the concept of “lateral” velocity, i. e., the speed of changing lanes. The latter version allows for carrying out calculations in the computational domain which corresponds to the actual geometry of the road. The section also presents the test results of modeling vehicle dynamics on a road fragment with the local widening and on a road fragment with traffic lights, including several variants of traffic light regimes. In the first case, the calculations allow to draw interesting conclusions about the impact of a road widening on a road capacity as a whole, and in the second case — to select the optimal regime configuration to obtain the “green wave” effect. The microscopic model is based on the cellular automata theory and the single-lane Nagel – Schreckenberg model and is generalized for the multi-lane case by the authors of the article. The model implements various behavioral strategies of drivers. Test computations for the real transport network section in Moscow city center are presented. To achieve an adequate representation of vehicles moving through the network according to road traffic regulations the authors implemented special algorithms adapted for parallel computing. Test calculations were performed on the K-100 supercomputer installed in the Centre of Collective Usage of KIAM RAS.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"