Результаты поиска по 'computer analysis':
Найдено статей: 114
  1. Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

  2. Bogdanov A.V., P. Sone K. Ko, Zaya K.
    Performance of the OpenMP and MPI implementations on ultrasparc system
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 485-491

    This paper targets programmers and developers interested in utilizing parallel programming techniques to enhance application performance. The Oracle Solaris Studio software provides state-of-the-art optimizing and parallelizing compilers for C, C++ and Fortran, an advanced debugger, and optimized mathematical and performance libraries. Also included are an extremely powerful performance analysis tool for profiling serial and parallel applications, a thread analysis tool to detect data races and deadlock in memory parallel programs, and an Integrated Development Environment (IDE). The Oracle Message Passing Toolkit software provides the high-performance MPI libraries and associated run-time environment needed for message passing applications that can run on a single system or across multiple compute systems connected with high performance networking, including Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand and Myrinet. Examples of OpenMP and MPI are provided throughout the paper, including their usage via the Oracle Solaris Studio and Oracle Message Passing Toolkit products for development and deployment of both serial and parallel applications on SPARC and x86/x64 based systems. Throughout this paper it is demonstrated how to develop and deploy an application parallelized with OpenMP and/or MPI.

    Views (last year): 2.
  3. Serkov L.A., Krasnykh S.S.
    Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684

    This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.

  4. Segmentation of medical image is one of the most challenging tasks in analysis of medical image. It classifies the organs pixels or lesions from medical images background like MRI or CT scans, that is to provide critical information about the human organ’s volumes and shapes. In scientific imaging field, medical imaging is considered one of the most important topics due to the rapid and continuing progress in computerized medical image visualization, advances in analysis approaches and computer-aided diagnosis. Digital image processing becomes more important in healthcare field due to the growing use of direct digital imaging systems for medical diagnostics. Due to medical imaging techniques, approaches of image processing are now applicable in medicine. Generally, various transformations will be needed to extract image data. Also, a digital image can be considered an approximation of a real situation includes some uncertainty derived from the constraints on the process of vision. Since information on the level of uncertainty will influence an expert’s attitude. To address this challenge, we propose novel framework involving interval concept that consider a good tool for dealing with the uncertainty, In the proposed approach, the medical images are transformed into interval valued representation approach and entropies are defined for an image object and background. Then we determine a threshold for lower-bound image and for upper-bound image, and then calculate the mean value for the final output results. To demonstrate the effectiveness of the proposed framework, we evaluate it by using synthetic image and its ground truth. Experimental results showed how performance of the segmentation-based entropy threshold can be enhanced using proposed approach to overcome ambiguity.

  5. Aksenov A.A., Pokhilko V.I., Moryak A.P.
    Usage of boundary layer grids in numerical simulations of viscous phenomena in of ship hydrodynamics problems
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 995-1008

    Numerical simulation of hull flow, marine propellers and other basic problems of ship hydrodynamics using Cartesian adaptive locally-refined grids is advantageous with respect to numerical setup and makes an express analysis very convenient. However, when more accurate viscous phenomena are needed, they condition some problems including a sharp increase of cell number due to high levels of main grid adaptation needed to resolve boundary layers and time step decrease in simulations with a free surface due to decrease of transit time in adapted cells. To avoid those disadvantages, additional boundary layer grids are suggested for resolution of boundary layers. The boundary layer grids are one-dimensional adaptations of main grid layers nearest to a wall, which are built along a normal direction. The boundary layer grids are additional (or chimerical), their volumes are not subtracted from main grid volumes. Governing equations of flow are integrated in both grids simultaneously, and the solutions are merged according to a special algorithm. In simulations of ship hull flow boundary layer grids are able to provide sufficient conditions for low-Reynolds turbulence models and significantly improve flow structure in continues boundary layers along smooth surfaces. When there are flow separations or other complex phenomena on a hull surface, it can be subdivided into regions, and the boundary layer grids should be applied to the regions with simple flow only. This still provides a drastic decrease of computational efforts. In simulations of marine propellers, the boundary layer grids are able to provide refuse of wall functions on blade surfaces, what leads to significantly more accurate hydrodynamic forces. Altering number and configuration of boundary grid layers, it is possible to vary a boundary layer resolution without change of a main grid. This makes the boundary layer grids a suitable tool to investigate scale effects in both problems considered.

  6. Almasri A., Tsybulin V.G.
    A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615

    The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.

  7. Krivovichev G.V.
    Difference splitting schemes for the system of one-dimensional equations of hemodynamics
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488

    The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.

    For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.

  8. Zenkov A.V.
    A novel method of stylometry based on the statistic of numerals
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 837-850

    A new method of statistical analysis of texts is suggested. The frequency distribution of the first significant digits in numerals of English-language texts is considered. We have taken into account cardinal as well as ordinal numerals expressed both in figures, and verbally. To identify the author’s use of numerals, we previously deleted from the text all idiomatic expressions and set phrases accidentally containing numerals, as well as itemizations and page numbers, etc. Benford’s law is found to hold approximately for the frequencies of various first significant digits of compound literary texts by different authors; a marked predominance of the digit 1 is observed. In coherent authorial texts, characteristic deviations from Benford’s law arise which are statistically stable significant author peculiarities that allow, under certain conditions, to consider the problem of authorship and distinguish between texts by different authors. The text should be large enough (at least about 200 kB). At the end of $\{1, 2, \ldots, 9\}$ digits row, the frequency distribution is subject to strong fluctuations and thus unrepresentative for our purpose. The aim of the theoretical explanation of the observed empirical regularity is not intended, which, however, does not preclude the applicability of the proposed methodology for text attribution. The approach suggested and the conclusions are backed by the examples of the computer analysis of works by W.M. Thackeray, M. Twain, R. L. Stevenson, J. Joyce, sisters Bront¨e, and J.Austen. On the basis of technique suggested, we examined the authorship of a text earlier ascribed to L. F. Baum (the result agrees with that obtained by different means). We have shown that the authorship of Harper Lee’s “To Kill a Mockingbird” pertains to her, whereas the primary draft, “Go Set a Watchman”, seems to have been written in collaboration with Truman Capote. All results are confirmed on the basis of parametric Pearson’s chi-squared test as well as non-parametric Mann –Whitney U test and Kruskal –Wallis test.

    Views (last year): 10.
  9. Rusyak I.G., Tenenev V.A.
    Modeling of ballistics of an artillery shot taking into account the spatial distribution of parameters and backpressure
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1123-1147

    The paper provides a comparative analysis of the results obtained by various approaches to modeling the process of artillery shot. In this connection, the main problem of internal ballistics and its particular case of the Lagrange problem are formulated in averaged parameters, where, within the framework of the assumptions of the thermodynamic approach, the distribution of pressure and gas velocity over the projectile space for a channel of variable cross section is taken into account for the first time. The statement of the Lagrange problem is also presented in the framework of the gas-dynamic approach, taking into account the spatial (one-dimensional and two-dimensional axisymmetric) changes in the characteristics of the ballistic process. The control volume method is used to numerically solve the system of Euler gas-dynamic equations. Gas parameters at the boundaries of control volumes are determined using a selfsimilar solution to the Riemann problem. Based on the Godunov method, a modification of the Osher scheme is proposed, which allows to implement a numerical calculation algorithm with a second order of accuracy in coordinate and time. The solutions obtained in the framework of the thermodynamic and gas-dynamic approaches are compared for various loading parameters. The effect of projectile mass and chamber broadening on the distribution of the ballistic parameters of the shot and the dynamics of the projectile motion was studied. It is shown that the thermodynamic approach, in comparison with the gas-dynamic approach, leads to a systematic overestimation of the estimated muzzle velocity of the projectile in the entire range of parameters studied, while the difference in muzzle velocity can reach 35%. At the same time, the discrepancy between the results obtained in the framework of one-dimensional and two-dimensional gas-dynamic models of the shot in the same range of change in parameters is not more than 1.3%.

    A spatial gas-dynamic formulation of the backpressure problem is given, which describes the change in pressure in front of an accelerating projectile as it moves along the barrel channel. It is shown that accounting the projectile’s front, considered in the two-dimensional axisymmetric formulation of the problem, leads to a significant difference in the pressure fields behind the front of the shock wave, compared with the solution in the framework of the onedimensional formulation of the problem, where the projectile’s front is not possible to account. It is concluded that this can significantly affect the results of modeling ballistics of a shot at high shooting velocities.

  10. Elaraby A.E., Nechaevskiy A.V.
    An effective segmentation approach for liver computed tomography scans using fuzzy exponential entropy
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 195-202

    Accurate segmentation of liver plays important in contouring during diagnosis and the planning of treatment. Imaging technology analysis and processing are wide usage in medical diagnostics, and therapeutic applications. Liver segmentation referring to the process of automatic or semi-automatic detection of liver image boundaries. A major difficulty in segmentation of liver image is the high variability as; the human anatomy itself shows major variation modes. In this paper, a proposed approach for computed tomography (CT) liver segmentation is presented by combining exponential entropy and fuzzy c-partition. Entropy concept has been utilized in various applications in imaging computing domain. Threshold techniques based on entropy have attracted a considerable attention over the last years in image analysis and processing literatures and it is among the most powerful techniques in image segmentation. In the proposed approach, the computed tomography (CT) of liver is transformed into fuzzy domain and fuzzy entropies are defined for liver image object and background. In threshold selection procedure, the proposed approach considers not only the information of liver image background and object, but also interactions between them as the selection of threshold is done by find a proper parameter combination of membership function such that the total fuzzy exponential entropy is maximized. Differential Evolution (DE) algorithm is utilizing to optimize the exponential entropy measure to obtain image thresholds. Experimental results in different CT livers scan are done and the results demonstrate the efficient of the proposed approach. Based on the visual clarity of segmented images with varied threshold values using the proposed approach, it was observed that liver segmented image visual quality is better with the results higher level of threshold.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"