All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Numerical Simulation, Parallel Algorithms and Software for Performance Forecast of the System “Fractured-Porous Reservoir – Producing Well” During its Commissioning Into Operation
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1069-1075The mathematical model, finite-difference schemes and algorithms for computation of transient thermoand hydrodynamic processes involved in commissioning the unified system including the oil producing well, electrical submersible pump and fractured-porous reservoir with bottom water are developed. These models are implemented in the computer package to simulate transient processes with simultaneous visualization of their results along with computations. An important feature of the package Oil-RWP is its interaction with the special external program GCS which simulates the work of the surface electric control station and data exchange between these two programs. The package Oil-RWP sends telemetry data and current parameters of the operating submersible unit to the program module GCS (direct coupling). The station controller analyzes incoming data and generates the required control parameters for the submersible pump. These parameters are sent to Oil-RWP (feedback). Such an approach allows us to consider the developed software as the “Intellectual Well System”.
Some principal results of the simulations can be briefly presented as follows. The transient time between inaction and quasi-steady operation of the producing well depends on the well stream watering, filtration and capacitive parameters of oil reservoir, physical-chemical properties of phases and technical characteristics of the submersible unit. For the large time solution of the nonstationary equations governing the nonsteady processes is practically identical to the inverse quasi-stationary problem solution with the same initial data. The developed software package is an effective tool for analysis, forecast and optimization of the exploiting parameters of the unified oil-producing complex during its commissioning into the operating regime.
-
Synchronization of the asymmetrical system with three non-identical Kuramoto oscillators: models of solar meridional circulation
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 345-356Kuramoto model of non-linearly coupled oscillators provides a simple but effective approach to the study of the synchronization phenomenon in complex systems. In the present article we consider a particular Kuramoto model with three non-identical oscillators associated with a multi-cell radial profile of the solar meridional circulation. The top and the bottom oscillators are coupled through the middle one. The main difference of the present Kuramoto model from the previous ones consists in the non-identical coupling: coupling coefficients which tie the middle oscillator with the top and the bottom ones are different. We investigate how the value of the coupling asymmetry of the middle oscillator influences the synchronization. In the present model the synchronization conditions appear to be different the classical Kuramoto model allowing the synchronization to be reached with weaker coupling. We perform a reconstruction of coupling coefficients from the phase difference between the top and the bottom oscillators, assuming that the synchronization is reached and the natural frequencies are known. The absolute cumulative coupling is uniquely determined by the phase difference between the top and the bottom oscillators and the coupling asymmetry of the middle oscillator. In general case, higher values of the coupling asymmetry of the middle oscillator correspond to lower cumulative coupling. A unique coupling reconstruction with unknown coupling asymmetry is possible in general case only for the weak cumulative coupling. Deviations from the general case are discussed. We perform a model simulation with natural frequencies estimated from the velocities of the solar meridional flow. Heliseismological observations of the deep flow may be attributed either to the middle cell or to the deep one. We discuss the difference between these two cases in terms of the coupling reconstruction.
-
From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.
Keywords: population, dynamics, age structure, migration, genetic divergence, bistability, bifurcations. -
The key approaches and review of current researches on dynamics of structured and interacting populations
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151Views (last year): 40. Citations: 2 (RSCI).The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.
-
Stochastic simulation of chemical reactions in subdiffusion medium
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 87-104Theory of anomalous diffusion, which describe a vast number of transport processes with power law mean squared displacement, is actively advancing in recent years. Diffusion of liquids in porous media, carrier transport in amorphous semiconductors and molecular transport in viscous environments are widely known examples of anomalous deceleration of transport processes compared to the standard model.
Direct Monte Carlo simulation is a convenient tool for studying such processes. An efficient stochastic simulation algorithm is developed in the present paper. It is based on simple renewal process with interarrival times that have power law asymptotics. Analytical derivations show a deep connection between this class of random process and equations with fractional derivatives. The algorithm is further generalized by coupling it with chemical reaction simulation. It makes stochastic approach especially useful, because the exact form of integrodifferential evolution equations for reaction — subdiffusion systems is still a matter of debates.
Proposed algorithm relies on non-markovian random processes, hence one should carefully account for qualitatively new effects. The main question is how molecules leave the system during chemical reactions. An exact scheme which tracks all possible molecule combinations for every reaction channel is computationally infeasible because of the huge number of such combinations. It necessitates application of some simple heuristic procedures. Choosing one of these heuristics greatly affects obtained results, as illustrated by a series of numerical experiments.
-
Dynamics analysis of coupled synthetic genetic repressilators
Computer Research and Modeling, 2010, v. 2, no. 4, pp. 403-418Views (last year): 2. Citations: 2 (RSCI).We have investigated dynamics of synthetic genetic oscillators — repressilators — coupled through autoinducer diffusion. The model of the system with phase-repulsive coupling structure is under consideration. We have examined emergence of periodic regimes, stable inhomogeneous steady states depending on the main systems’ parameters: coupling strength and maximal transcription rate. It has been shown that autoinducer production module added to the isolated repressilator cause the limit cycle to disappear through infinite period bifurcation for sufficiently large transcription rate. We have found hysteresis of limit cycle and stable steady state the size of which is determined by ratio between mRNA and protein lifetimes. Two coupled oscillators system demonstrates stable anti-phase oscillations which can become a chaotic regime through invariant torus emergence or via Feigenbaum scenario.
-
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
Development of a computational environment for mathematical modeling of superconducting nanostructures with a magnet
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1349-1358Now days the main research activity in the field of nanotechnology is aimed at the creation, study and application of new materials and new structures. Recently, much attention has been attracted by the possibility of controlling magnetic properties using a superconducting current, as well as the influence of magnetic dynamics on the current–voltage characteristics of hybrid superconductor/ferromagnet (S/F) nanostructures. In particular, such structures include the S/F/S Josephson junction or molecular nanomagnets coupled to the Josephson junctions. Theoretical studies of the dynamics of such structures need processes of a large number of coupled nonlinear equations. Numerical modeling of hybrid superconductor/magnet nanostructures implies the calculation of both magnetic dynamics and the dynamics of the superconducting phase, which strongly increases their complexity and scale, so it is advisable to use heterogeneous computing systems.
In the course of studying the physical properties of these objects, it becomes necessary to numerically solve complex systems of nonlinear differential equations, which requires significant time and computational resources.
The currently existing micromagnetic algorithms and frameworks are based on the finite difference or finite element method and are extremely useful for modeling the dynamics of magnetization on a wide time scale. However, the functionality of existing packages does not allow to fully implement the desired computation scheme.
The aim of the research is to develop a unified environment for modeling hybrid superconductor/magnet nanostructures, providing access to solvers and developed algorithms, and based on a heterogeneous computing paradigm that allows research of superconducting elements in nanoscale structures with magnets and hybrid quantum materials. In this paper, we investigate resonant phenomena in the nanomagnet system associated with the Josephson junction. Such a system has rich resonant physics. To study the possibility of magnetic reversal depending on the model parameters, it is necessary to solve numerically the Cauchy problem for a system of nonlinear equations. For numerical simulation of hybrid superconductor/magnet nanostructures, a computing environment based on the heterogeneous HybriLIT computing platform is implemented. During the calculations, all the calculation times obtained were averaged over three launches. The results obtained here are of great practical importance and provide the necessary information for evaluating the physical parameters in superconductor/magnet hybrid nanostructures.
-
Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.
The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"