All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Visualization of three-dimensional scenes. Technology for data storing and manipulating
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 119-127This article is devoted to some problems of declaring and storing information for objects' visualization. The storage structure and resources control technology can be applied for real-time visualization of three-dimensional scenes. Such instruments as Sample Framework from DirectX SDK and Direct3D Extension Library (D3DX) were used in the implementation.
Keywords: 3D visualization, information storing.Views (last year): 2. Citations: 2 (RSCI). -
On the stochastic gradient descent matrix factorization in application to the supervised classification of microarrays
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 131-140Citations: 4 (RSCI).Microarray datasets are highly dimensional, with a small number of collected samples in comparison to thousands of features. This poses a significant challenge that affects the interpretation, applicability and validation of the analytical results. Matrix factorizations have proven to be a useful method for describing data in terms of a small number of meta-features, which reduces noise, while still capturing the essential features of the data. Three novel and mutually relevant methods are presented in this paper: 1) gradient-based matrix factorization with two adaptive learning rates (in accordance with the number of factor matrices) and their automatic updates; 2) nonparametric criterion for the selection of the number of factors; and 3) nonnegative version of the gradient-based matrix factorization which doesn't require any extra computational costs in difference to the existing methods. We demonstrate effectiveness of the proposed methods to the supervised classification of gene expression data.
-
Neural network model of human intoxication functional state determining in some problems of transport safety solution
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 285-293Views (last year): 42. Citations: 2 (RSCI).This article solves the problem of vehicles drivers intoxication functional statedetermining. Its solution is relevant in the transport security field during pre-trip medical examination. The problem solution is based on the papillomometry method application, which allows to evaluate the driver state by his pupillary reaction to illumination change. The problem is to determine the state of driver inebriation by the analysis of the papillogram parameters values — a time series characterizing the change in pupil dimensions upon exposure to a short-time light pulse. For the papillograms analysis it is proposed to use a neural network. A neural network model for determining the drivers intoxication functional state is developed. For its training, specially prepared data samples are used which are the values of the following parameters of pupillary reactions grouped into two classes of functional states of drivers: initial diameter, minimum diameter, half-constriction diameter, final diameter, narrowing amplitude, rate of constriction, expansion rate, latent reaction time, the contraction time, the expansion time, the half-contraction time, and the half-expansion time. An example of the initial data is given. Based on their analysis, a neural network model is constructed in the form of a single-layer perceptron consisting of twelve input neurons, twenty-five neurons of the hidden layer, and one output neuron. To increase the model adequacy using the method of ROC analysis, the optimal cut-off point for the classes of solutions at the output of the neural network is determined. A scheme for determining the drivers intoxication state is proposed, which includes the following steps: pupillary reaction video registration, papillogram construction, parameters values calculation, data analysis on the base of the neural network model, driver’s condition classification as “norm” or “rejection of the norm”, making decisions on the person being audited. A medical worker conducting driver examination is presented with a neural network assessment of his intoxication state. On the basis of this assessment, an opinion on the admission or removal of the driver from driving the vehicle is drawn. Thus, the neural network model solves the problem of increasing the efficiency of pre-trip medical examination by increasing the reliability of the decisions made.
-
Stable character of the Rice statistical distribution: the theory and application in the tasks of the signals’ phase shift measuring
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 475-485The paper concerns the study of the Rice statistical distribution’s peculiarities which cause the possibility of its efficient application in solving the tasks of high precision phase measuring in optics. The strict mathematical proof of the Rician distribution’s stable character is provided in the example of the differential signal consideration, namely: it has been proved that the sum or the difference of two Rician signals also obey the Rice distribution. Besides, the formulas have been obtained for the parameters of the resulting summand or differential signal’s Rice distribution. Based upon the proved stable character of the Rice distribution a new original technique of the high precision measuring of the two quasi-harmonic signals’ phase shift has been elaborated in the paper. This technique is grounded in the statistical analysis of the measured sampled data for the amplitudes of the both signals and for the amplitude of the third signal which is equal to the difference of the two signals to be compared in phase. The sought-for phase shift of two quasi-harmonic signals is being calculated from the geometrical considerations as an angle of a triangle which sides are equal to the three indicated signals’ amplitude values having been reconstructed against the noise background. Thereby, the proposed technique of measuring the phase shift using the differential signal analysis, is based upon the amplitude measurements only, what significantly decreases the demands to the equipment and simplifies the technique implementation in practice. The paper provides both the strict mathematical substantiation of a new phase shift measuring technique and the results of its numerical testing. The elaborated method of high precision phase measurements may be efficiently applied for solving a wide circle of tasks in various areas of science and technology, in particular — at distance measuring, in communication systems, in navigation, etc.
-
On application of the asymptotic tests for estimating the number of mixture distribution components
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 45-53Views (last year): 1. Citations: 2 (RSCI).The paper demonstrates the efficiency of asymptotically most powerful test of statistical hypotheses about the number of mixture components in the adding and splitting component models. Test data are the samples from different finite normal mixtures. The results are compared for various significance levels and weights.
-
Analytical solution and computer simulation of the task of Rician distribution’s parameters in limiting cases of large and small values of signal-to-noise ratio
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 227-242Views (last year): 2.The paper provides a solution of a task of calculating the parameters of a Rician distributed signal on the basis of the maximum likelihood principle in limiting cases of large and small values of the signal-tonoise ratio. The analytical formulas are obtained for the solution of the maximum likelihood equations’ system for the required signal and noise parameters for both the one-parameter approximation, when only one parameter is being calculated on the assumption that the second one is known a-priori, and for the two-parameter task, when both parameters are a-priori unknown. The direct calculation of required signal and noise parameters by formulas allows escaping the necessity of time resource consuming numerical solving the nonlinear equations’ s system and thus optimizing the duration of computer processing of signals and images. There are presented the results of computer simulation of a task confirming the theoretical conclusions. The task is meaningful for the purposes of Rician data processing, in particular, magnetic-resonance visualization.
-
Statistical distribution of the quasi-harmonic signal’s phase: basics of theory and computer simulation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 287-297The paper presents the results of the fundamental research directed on the theoretical study and computer simulation of peculiarities of the quasi-harmonic signal’s phase statistical distribution. The quasi-harmonic signal is known to be formed as a result of the Gaussian noise impact on the initially harmonic signal. By means of the mathematical analysis the formulas have been obtained in explicit form for the principle characteristics of this distribution, namely: for the cumulative distribution function, the probability density function, the likelihood function. As a result of the conducted computer simulation the dependencies of these functions on the phase distribution parameters have been analyzed. The paper elaborates the methods of estimating the phase distribution parameters which contain the information about the initial, undistorted signal. It has been substantiated that the task of estimating the initial value of the phase of quasi-harmonic signal can be efficiently solved by averaging the results of the sampled measurements. As for solving the task of estimating the second parameter of the phase distribution, namely — the parameter, determining the signal level respectively the noise level — a maximum likelihood technique is proposed to be applied. The graphical illustrations are presented that have been obtained by means of the computer simulation of the principle characteristics of the phase distribution under the study. The existence and uniqueness of the likelihood function’s maximum allow substantiating the possibility and the efficiency of solving the task of estimating signal’s level relative to noise level by means of the maximum likelihood technique. The elaborated method of estimating the un-noised signal’s level relative to noise, i. e. the parameter characterizing the signal’s intensity on the basis of measurements of the signal’s phase is an original and principally new technique which opens perspectives of usage of the phase measurements as a tool of the stochastic data analysis. The presented investigation is meaningful for solving the task of determining the phase and the signal’s level by means of the statistical processing of the sampled phase measurements. The proposed methods of the estimation of the phase distribution’s parameters can be used at solving various scientific and technological tasks, in particular, in such areas as radio-physics, optics, radiolocation, radio-navigation, metrology.
-
Mathematical modeling of SHS process in heterogeneous reactive powder mixtures
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 147-153Views (last year): 2. Citations: 5 (RSCI).In this paper we present a mathematical model and numerical results on a propagation of the combustion front of the SHS compound, where the rate of chemical reaction at each point of the SHS sample is determined by solving the problem of diffusion and chemical reaction in the reaction cell. We obtained the dependence of the combustion front on the size of the average element of a heterogeneous structure with different values of the diffusion intensity. These dependences agree qualitatively with the experimental data. We studied the effect of activation energy for diffusion on the propagation velocity of combustion front. It is revealed the propagation of the combustion front transforms to an oscillatory regime at increase in activation energy of diffusion. A transition boundary of the combustion front propagation from the steady-state regime to the oscillatory one is defined.
-
Reduction of decision rule of multivariate interpolation and approximation method in the problem of data classification
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 475-484Views (last year): 5.This article explores a method of machine learning based on the theory of random functions. One of the main problems of this method is that decision rule of a model becomes more complicated as the number of training dataset examples increases. The decision rule of the model is the most probable realization of a random function and it's represented as a polynomial with the number of terms equal to the number of training examples. In this article we will show the quick way of the number of training dataset examples reduction and, accordingly, the complexity of the decision rule. Reducing the number of examples of training dataset is due to the search and removal of weak elements that have little effect on the final form of the decision function, and noise sampling elements. For each $(x_i,y_i)$-th element sample was introduced the concept of value, which is expressed by the deviation of the estimated value of the decision function of the model at the point $x_i$, built without the $i$-th element, from the true value $y_i$. Also we show the possibility of indirect using weak elements in the process of training model without increasing the number of terms in the decision function. At the experimental part of the article, we show how changed amount of data affects to the ability of the method of generalizing in the classification task.
-
Numerical simulation of frequency dependence of dielectric permittivity and electrical conductivity of saturated porous media
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 765-773Views (last year): 8.This article represents numerical simulation technique for determining effective spectral electromagnetic properties (effective electrical conductivity and relative dielectric permittivity) of saturated porous media. Information about these properties is vastly applied during the interpretation of petrophysical exploration data of boreholes and studying of rock core samples. The main feature of the present paper consists in the fact, that it involves three-dimensional saturated digital rock models, which were constructed based on the combined data considering microscopic structure of the porous media and the information about capillary equilibrium of oil-water mixture in pores. Data considering microscopic structure of the model are obtained by means of X-ray microscopic tomography. Information about distributions of saturating fluids is based on hydrodynamic simulations with density functional technique. In order to determine electromagnetic properties of the numerical model time-domain Fourier transform of Maxwell equations is considered. In low frequency approximation the problem can be reduced to solving elliptic equation for the distribution of complex electric potential. Finite difference approximation is based on discretization of the model with homogeneous isotropic orthogonal grid. This discretization implies that each computational cell contains exclusively one medium: water, oil or rock. In order to obtain suitable numerical model the distributions of saturating components is segmented. Such kind of modification enables avoiding usage of heterogeneous grids and disregards influence on the results of simulations of the additional techniques, required in order to determine properties of cells, filled with mixture of media. Corresponding system of differential equations is solved by means of biconjugate gradient stabilized method with multigrid preconditioner. Based on the results of complex electric potential computations average values of electrical conductivity and relative dielectric permittivity is calculated. For the sake of simplicity, this paper considers exclusively simulations with no spectral dependence of conductivities and permittivities of model components. The results of numerical simulations of spectral dependence of effective characteristics of heterogeneously saturated porous media (electrical conductivity and relative dielectric permittivity) in broad range of frequencies and multiple water saturations are represented in figures and table. Efficiency of the presented approach for determining spectral electrical properties of saturated rocks is discussed in conclusion.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"