All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.
-
Calculation of aerodynamic factor of front resistance of a body in subsonic and transonic modes of movement by means of an ANSYS Fluent package
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 845-853Views (last year): 6. Citations: 5 (RSCI).The gas-dynamics approach to the calculation of the aerodynamic characteristics of modern aircraft makes it necessary to consider the complex and extensive set of tasks requiring the development of new methods for their solution. Drag coefficient for two bodies in subsonic and transonic flow regimes was calculated using ANSYS Fluent software. Numeric solution and results of the experiment are in good agreement; calculation error does not exceed 3 %.
-
Activity dynamics in virtual networks: an epidemic model vs an excitable medium model
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1485-1499Epidemic models are widely used to mimic social activity, such as spreading of rumors or panic. Simultaneously, models of excitable media are traditionally used to simulate the propagation of activity. Spreading of activity in the virtual community was simulated within two models: the SIRS epidemic model and the Wiener – Rosenblut model of the excitable media. We used network versions of these models. The network was assumed to be heterogeneous, namely, each element of the network has an individual set of characteristics, which corresponds to different psychological types of community members. The structure of a virtual network relies on an appropriate scale-free network. Modeling was carried out on scale-free networks with various values of the average degree of vertices. Additionally, a special case was considered, namely, a complete graph corresponding to a close professional group, when each member of the group interacts with each. Participants in a virtual community can be in one of three states: 1) potential readiness to accept certain information; 2) active interest to this information; 3) complete indifference to this information. These states correspond to the conditions that are usually used in epidemic models: 1) susceptible to infection, 2) infected, 3) refractory (immune or death due to disease). A comparison of the two models showed their similarity both at the level of main assumptions and at the level of possible modes. Distribution of activity over the network is similar to the spread of infectious diseases. It is shown that activity in virtual networks may experience fluctuations or decay.
-
The dynamics of monkeypox transmission with an optimal vaccination strategy through a mathematical modelling approach
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1635-1651Monkeypox is a disease reemerging in 2022 which is caused by the monkeypox virus (MPV). This disease can be transmitted not only from rodents to humans, but also from humans to other humans, and even from the environment to humans. In this work, we propose a mathematical model to capture the dynamics of monkeypox transmission which involve three modes of transmission, namely, from rodents to rodents, rodents to humans, and from humans to other humans. In addition to the basic reproduction number, we investigate the stability of all equilibrium points analytically, including an implicit endemic equilibrium by applying the center manifold theorem. Moreover, the vaccination as an alternative solution to eradicate the monkeypox transmission is discussed and solved as an optimal control problem. The results of this study show that the transmission of monkeypox is directly affected by the internal infection rates of each population, i. e., the infection rate of the susceptible human by an infected human and the infection rate of the susceptible rodent by an infected rodent. Furthermore, the external infection rates, i. e., the infection rate of the susceptible human by an infected rodent also affects the transmission of monkeypox although it does not affect the basic reproduction number directly.
-
Dynamics regimes of population with non-overlapping generations taking into account genetic and stage structures
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1165-1190This paper studies a model of a population with non-overlapping generations and density-dependent regulation of birth rate. The population breeds seasonally, and its reproductive potential is determined genetically. The model proposed combines an ecological dynamic model of a limited population with non-overlapping generations and microevolutionary model of its genetic structure dynamics for the case when adaptive trait of birth rate controlled by a single diallelic autosomal locus with allelomorphs A and a. The study showed the genetic composition of the population, namely, will it be polymorphic or monomorphic, is mainly determined by the values of the reproductive potentials of heterozygote and homozygotes. Moreover, the average reproductive potential of mature individuals and intensity of self-regulation processes determine population dynamics. In particularly, increasing the average value of the reproductive potential leads to destabilization of the dynamics of age group sizes. The intensity of self-regulation processes determines the nature of emerging oscillations, since scenario of stability loss of fixed points depends on the values of this parameter. It is shown that patterns of occurrence and evolution of cyclic dynamics regimes are mainly determined by the features of life cycle of individuals in population. The life cycle leading to existence of non-overlapping generation gives isolated subpopulations in different years, which results in the possibility of independent microevolution of these subpopulations and, as a result, the complex dynamics emergence of both stage structure and genetic one. Fixing various adaptive mutations will gradually lead to genetic (and possibly morphological) differentiation and to differences in the average reproductive potentials of subpopulations that give different values of equilibrium subpopulation sizes. Further evolutionary growth of reproductive potentials of limited subpopulations leads to their number fluctuations which can differ in both amplitude and phase.
-
Dynamical characteristics of DNA kinks and antikinks
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 209-217Views (last year): 2. Citations: 7 (RSCI).In this article in the frameworks of the sine-Gordon mode we have calculated the dynamical characteristics of kinks and antikinks activated in the homogeneous polynucleotide chains each if them contains only one of the types of the bases: adenines, thymines, guanines or cytosines. We have obtained analytical formulas and constructed the graphs for the kink and antikink profiles and for their energy density in the 2D- and 3D-dimension. Mass of kinks and antikinks, their energy of rest and their size have been estimated. The trajectories of kink and antikink motion in the phase space have been calculated in the 2D- and 3D-dimension.
-
Phase transition from α-helices to β-sheets in supercoils of fibrillar proteins
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 705-725Views (last year): 6. Citations: 1 (RSCI).The transition from α-helices to β-strands under external mechanical force in fibrin molecule containing coiled-coils is studied and free energy landscape is resolved. The detailed theoretical modeling of each stage of coiled-coils fragment pulling process was performed. The plots of force (F) as a function of molecule expansion (X) for two symmetrical fibrin coiled-coils (each ∼17 nm in length) show three distinct modes of mechanical behaviour: (1) linear (elastic) mode when coiled-coils behave like entropic springs (F<100−125 pN and X<7−8 nm), (2) viscous (plastic) mode when molecule resistance force does not increase with increase in elongation length (F≈150 pN and X≈10−35 nm) and (3) nonlinear mode (F>175−200 pN and X>40−50 nm). In linear mode the coiled-coils unwind at 2π radian angle, but no structural transition occurs. Viscous mode is characterized by the phase transition from the triple α-spirals to three-stranded parallel β-sheet. The critical tension of α-helices is 0.25 nm per turn, and the characteristic energy change is equal to 4.9 kcal/mol. Changes in internal energy Δu, entropy Δs and force capacity cf per one helical turn for phase transition were also computed. The observed dynamic behavior of α-helices and phase transition from α-helices to β-sheets under tension might represent a universal mechanism of regulation of fibrillar protein structures subject to mechanical stresses due to biological forces.
-
Application of the Dynamic Mode Decomposition in search of unstable modes in laminar-turbulent transition problem
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1069-1090Laminar-turbulent transition is the subject of an active research related to improvement of economic efficiency of air vehicles, because in the turbulent boundary layer drag increases, which leads to higher fuel consumption. One of the directions of such research is the search for efficient methods, that can be used to find the position of the transition in space. Using this information about laminar-turbulent transition location when designing an aircraft, engineers can predict its performance and profitability at the initial stages of the project. Traditionally, $e^N$ method is applied to find the coordinates of a laminar-turbulent transition. It is a well known approach in industry. However, despite its widespread use, this method has a number of significant drawbacks, since it relies on parallel flow assumption, which limits the scenarios for its application, and also requires computationally expensive calculations in a wide range of frequencies and wave numbers. Alternatively, flow analysis can be done by using Dynamic Mode Decomposition, which allows one to analyze flow disturbances using flow data directly. Since Dynamic Mode Decomposition is a dimensionality reduction method, the number of computations can be dramatically reduced. Furthermore, usage of Dynamic Mode Decomposition expands the applicability of the whole method, due to the absence of assumptions about the parallel flow in its derivation.
The presented study proposes an approach to finding the location of a laminar-turbulent transition using the Dynamic Mode Decomposition method. The essence of this approach is to divide the boundary layer region into sets of subregions, for each of which the transition point is independently calculated, using Dynamic Mode Decomposition for flow analysis, after which the results are averaged to produce the final result. This approach is validated by laminar-turbulent transition predictions of subsonic and supersonic flows over a 2D flat plate with zero pressure gradient. The results demonstrate the fundamental applicability and high accuracy of the described method in a wide range of conditions. The study focuses on comparison with the $e^N$ method and proves the advantages of the proposed approach. It is shown that usage of Dynamic Mode Decomposition leads to significantly faster execution due to less intensive computations, while the accuracy is comparable to the such of the solution obtained with the $e^N$ method. This indicates the prospects for using the described approach in a real world applications.
-
Features of social interactions: the basic model
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1673-1693The paper considers the basic model of competitive interactions and its use for the analysis and description of social processes. The peculiarity of the model is that it describes the interaction of several competing actors, while actors can vary the strategy of their actions, in particular, form coalitions to jointly counter a common enemy. As a result of modeling, various modes of competitive interaction were identified, their classification was conducted, and their features were described. In the course of the study, the attention is paid to the so-called “rough” (according to A.A. Andronov) cases of the implementation of competitive interaction, which until now have rarely been considered in the scientific literature, but are quite common in real life. Using a basic mathematical model, the conditions for the implementation of various modes of competitive interactions are considered, the conditions for the transition from one mode to another are determined, examples of the implementation of these modes in the economy, social and political life are given. It is shown that with a relatively low level of competition, which is non-antagonistic in nature, competition can lead to an increase in the activity of interacting actors and to overall economic growth. Moreover, in the presence of expanding resource opportunities (as long as such opportunities remain), this growth may have a hyperbolic character. With a decrease in resource capabilities and increased competition, there is a transition to an oscillatory mode, when weaker actors unite to jointly counteract stronger ones. With a further decrease in resource opportunities and increased competition, there is a transition to the formation of stable hierarchical structures. At the same time, the model shows that at a certain moment there is a loss of stability, the system becomes “rough” according to A.A. Andronov and sensitive to fluctuations in parameter changes. As a result, the existing hierarchies may collapse and be replaced by new ones. With a further increase in the intensity of competition, the actor-leader completely suppresses his opponents and establishes monopolism. Examples from economic, social, and political life are given, illustrating the patterns identified on the basis of modeling using the basic model of competition. The obtained results can be used in the analysis, modeling and forecasting of socioeconomic and political processes.
-
Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.
The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"