All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
-
Mathematical and computational problems associated with the formation of structures in complex systems
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 805-815In this paper, the system of equations of magnetic hydrodynamics (MHD) is considered. The exact solutions found describe fluid flows in a porous medium and are related to the development of a core simulator and are aimed at creating a domestic technology «digital deposit» and the tasks of controlling the parameters of incompressible fluid. The central problem associated with the use of computer technology is large-dimensional grid approximations and high-performance supercomputers with a large number of parallel microprocessors. Kinetic methods for solving differential equations and methods for «gluing» exact solutions on coarse grids are being developed as possible alternatives to large-dimensional grid approximations. A comparative analysis of the efficiency of computing systems allows us to conclude that it is necessary to develop the organization of calculations based on integer arithmetic in combination with universal approximate methods. A class of exact solutions of the Navier – Stokes system is proposed, describing three-dimensional flows for an incompressible fluid, as well as exact solutions of nonstationary three-dimensional magnetic hydrodynamics. These solutions are important for practical problems of controlled dynamics of mineralized fluids, as well as for creating test libraries for verification of approximate methods. A number of phenomena associated with the formation of macroscopic structures due to the high intensity of interaction of elements of spatially homogeneous systems, as well as their occurrence due to linear spatial transfer in spatially inhomogeneous systems, are highlighted. It is fundamental that the emergence of structures is a consequence of the discontinuity of operators in the norms of conservation laws. The most developed and universal is the theory of computational methods for linear problems. Therefore, from this point of view, the procedures of «immersion» of nonlinear problems into general linear classes by changing the initial dimension of the description and expanding the functional spaces are important. Identification of functional solutions with functions makes it possible to calculate integral averages of an unknown, but at the same time its nonlinear superpositions, generally speaking, are not weak limits of nonlinear superpositions of approximations of the method, i.e. there are functional solutions that are not generalized in the sense of S. L. Sobolev.
-
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
-
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
Modeling of spatialtemporal migration for closely related species
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 477-488We consider a model of populations that are closely related and share a common areal. System of nonlinear parabolic equations is formulated that incorporates nonlinear diffusion and migration flows induced by nonuniform densities of population and carrying capacity. We employ the method of lines and study the impact of migration on scenarios of local competition and coexistence of species. Conditions on system parameters are determined when a nontrivial family of steady states is formed.
Keywords: dynamics of populations, nonlinear parabolic equations.Views (last year): 6. Citations: 9 (RSCI). -
Influence of diffusion and convection on the chemostat dynamics
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 121-129Views (last year): 1.Population dynamics is considered in a modified chemostat model including diffusion, chemotaxis, and nonlocal competitive losses. To account for influence of the external environment on the population of the ecosystem, a random parameter is included into the model equations. Computer simulations reveal three dynamic modes depending on system parameters: the transition from initial state to a spatially homogeneous steady state, to a spatially inhomogeneous distribution of population density, and elimination of population density.
-
Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 585-604Views (last year): 10. Citations: 12 (RSCI).In this paper we propose a mathematical model of cancer tumour occurrence in a quasi twodimensional epithelial tissue. Basic model of the epithelium growth describes the appearance of intensive movement and growth of tissue when it is damaged. The model includes the effects of division of cells and intercalation. It is assumed that the movement of cells is caused by the wave of mitogen-activated protein kinase (MAPK), which in turn activated by the chemo-mechanical signal propagating along tissue due to its local damage. In this paper it is assumed that cancer cells arise from local failure of spatial synchronization of circadian rhythms. The study of the evolutionary dynamics of the model could determine the chemo-physical properties of a tumour, and spatial relationship between the occurrence of cancer cells and development of the entire tissue parameters coordinating its evolution through the exchange of chemical and mechanical signals.
-
Substantiation of optimum planting schemes for forest plantations: a computer experiment
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 333-343Views (last year): 2. Citations: 2 (RSCI).The article presents the results of computer simulations aimed to assess the influence of tree spatial locations (planting schemes) on the productivity and the dynamics of soil fertility in forest plantations. The growth of aspen (Populus tremula L.) in plantations with short rotation (30 years) was simulated in the EFIMOD system of models with the soil and climatic data matching forested lands in the Mari El Republic. The outcome reveals that higher biomass rates, increase in soil organic matter stocks, and the minimal loss of soil nitrogen can be obtained when the distance between trees in the row equals 1–4 m and 4–6 м in aisles.
-
A discreet ‘power–society–economics’ model based on cellular automaton
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 561-572Views (last year): 8. Citations: 1 (RSCI).In this paper we consider a new modification of the discrete version of Mikhailov’s ‘power–society’ model, previously proposed by the author. This modification includes social-economical dynamics and corruption of the system similarly to continuous ‘power–society–economics–corruption’ model but is based on a stochastic cellular automaton describing the dynamics of power distribution in a hierarchy. This new version is founded on previously proposed ‘power–society’ system modeling cellular automaton, its cell state space enriched with variables corresponding to population, economic production, production assets volume and corruption level. The social-economical structure of the model is inherited from Solow and deterministic continuous ‘power–society–economics–corruption’ models. At the same time the new model is flexible, allowing to consider regional differentiation in all social and economical dynamics parameters, to use various production and demography models and to account for goods transit between the regions. A simulation system was built, including three power hierarchy levels, five regions and 100 municipalities. and a number of numerical experiments were carried out. This research yielded results showing specific changes of the dynamics in power distribution in hierarchy when corruption level increases. While corruption is zero (similar to the previous version of the model) the power distribution in hierarchy asymptotically tends to one of stationary states. If the corruption level increases substantially, volume of power in the system is subjected to irregular oscillations, and only much later tends to a stationary value. The meaning of these results can be interpreted as the fact that the stability of power hierarchy decreases when corruption level goes up.
-
Mathematical model of respiratory regulation during hypoxia and hypercapnia
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 297-310Views (last year): 16.Transport of respiratory gases by respiratory and circulatory systems is one of the most important processes associated with living conditions of the human body. Significant and/or long-term deviations of oxygen and carbon dioxide concentrations from the normal values in blood can be a reason of significant pathological changes with irreversible consequences: lack of oxygen (hypoxia and ischemic events), the change in the acidbase balance of blood (acidosis or alkalosis), and others. In the context of a changing external environment and internal conditions of the body the action of its regulatory systems aimed at maintaining homeostasis. One of the major mechanisms for maintaining concentrations (partial pressures) of oxygen and carbon dioxide in the blood at a normal level is the regulation of minute ventilation, respiratory rate and depth of respiration, which is caused by the activity of the central and peripheral regulators.
In this paper we propose a mathematical model of the regulation of pulmonary ventilation parameter. The model is used to calculate the minute ventilation adaptation during hypoxia and hypercapnia. The model is developed using a single-component model of the lungs, and biochemical equilibrium conditions of oxygen and carbon dioxide in the blood and the alveolar lung volume. A comparison with laboratory data is performed during hypoxia and hypercapnia. Analysis of the results shows that the model reproduces the dynamics of minute ventilation during hypercapnia with sufficient accuracy. Another result is that more accurate model of regulation of minute ventilation during hypoxia should be developed. The factors preventing from satisfactory accuracy are analysed in the final section.
Respiratory function is one of the main limiting factors of the organism during intense physical activities. Thus, it is important characteristic of high performance sport and extreme physical activity conditions. Therefore, the results of this study have significant application value in the field of mathematical modeling in sport. The considered conditions of hypoxia and hypercapnia are partly reproduce training at high altitude and at hypoxia conditions. The purpose of these conditions is to increase the level of hemoglobin in the blood of highly qualified athletes. These conditions are the only admitted by sport committees.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"