Результаты поиска по 'electron temperature':
Найдено статей: 12
  1. Madera A.G.
    Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630

    A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.

    Views (last year): 3.
  2. The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.

    Views (last year): 15. Citations: 6 (RSCI).
  3. Krasilnikov P.M.
    Role of hydrogen bonds in molecular relaxation during electron transport processes in biological systems
    Computer Research and Modeling, 2009, v. 1, no. 3, pp. 297-320

    In molecular systems with hydrogen bonds the mechanism of proton relaxation can take place. It is caused by redistribution of protons between two steady positions in double walls potential along the line of the hydrogen bond. This redistribution occurs at change of parameters of the double walls potential of the hydrogen bond which is caused by change of an electronic state of molecular system. The relaxation process is carried out due to a tunnel transfer of protons along the line of bonds. It is shown, that relaxation process can define temperature dependence of power parameters (either of the free energy differences ΔG or of the reorganization energy λ) of charge recombination P+Q-A from RC of Rhodobacter sphaeroides.

    Views (last year): 6. Citations: 3 (RSCI).
  4. Maslovskaya A.G., Sivunov A.V.
    The use of finite element method for simulation of heat conductivity processes in polar dielectrics irradiated by electron bunches
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 767-780

    The paper describes the results of computer simulation of time-dependent temperature fields arising in polar dielectrics irradiated by focused electron bunches with average electron energy when analyzing with electron microscopy techniques. The mathematical model was based on solving several-dimensional nonstationary heat conduction equation with use of numerical finite element method. The approximation of thermal source was performed taking into account the estimation of initial electron distribution determined by Monte-Carlo simulation of electron trajectories. The simulation program was designed in Matlab. The geometrical modeling and calculation results demonstrated the main features of model sample heating by electron beam were presented at the given experimental parameters as well as source approximation.

    Views (last year): 5. Citations: 3 (RSCI).
  5. Madera A.G.
    Modeling thermal feedback effect on thermal processes in electronic systems
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 483-494

    The article is devoted to the effect of thermal feedback, which occurs during the operation of integrated circuits and electronic systems with their use. Thermal feedback is due to the fact that the power consumed by the functioning of the microchip heats it and, due to the significant dependence of its electrical parameters on temperature, interactive interaction arises between its electrical and thermal processes. The effect of thermal feedback leads to a change in both electrical parameters and temperature levels in microcircuits. Positive thermal feedback is an undesirable phenomenon, because it causes the output of the electrical parameters of the microcircuits beyond the permissible values, the reduction in reliability and, in some cases, burn out. Negative thermal feedback is manifested in stabilizing the electrical and thermal regimes at lower temperature levels. Therefore, when designing microcircuits and electronic systems with their application, it is necessary to achieve the implementation of negative feedback. In this paper, we propose a method for modeling of thermal modes in electronic systems, taking into account the effect of thermal feedback. The method is based on introducing into the thermal model of the electronic system new model circuit elements that are nonlinearly dependent on temperature, the number of which is equal to the number of microcircuits in the electronic system. This approach makes it possible to apply matrix-topological equations of thermal processes to the thermal model with new circuit elements introduced into it and incorporate them into existing thermal design software packages. An example of modeling a thermal process in a real electronic system is presented, taking into account the effect of thermal feedback on the example of a microcircuit installed on a printed circuit board. It is shown that in order to adequately model the electrical and thermal processes of microcircuits and electronic systems, it is necessary to take into account the effects of thermal feedback in order to avoid design errors and create competitive electronic systems.

    Views (last year): 22. Citations: 3 (RSCI).
  6. The paper presents a physico-mathematical model of the perturbed region formed in the lower D-layer of the ionosphere under the action of directed radio emission flux from a terrestrial stand of the megahertz frequency range, obtained as a result of comprehensive theoretical studies. The model is based on the consideration of a wide range of kinetic processes taking into account their nonequilibrium and in the two-temperature approximation for describing the transformation of the radio beam energy absorbed by electrons. The initial data on radio emission achieved by the most powerful radio-heating stands are taken in the paper. Their basic characteristics and principles of functioning, and features of the altitude distribution of the absorbed electromagnetic energy of the radio beam are briefly described. The paper presents the decisive role of the D-layer of the ionosphere in the absorption of the energy of the radio beam. On the basis of theoretical analysis, analytical expressions are obtained for the contribution of various inelastic processes to the distribution of the absorbed energy, which makes it possible to correctly describe the contribution of each of the processes considered. The work considers more than 60 components. The change of the component concentration describe about 160 reactions. All the reactions are divided into five groups according to their physical content: ionization-chemical block, excitation block of metastable electronic states, cluster block, excitation block of vibrational states and block of impurities. Blocks are interrelated and can be calculated both jointly and separately. The paper presents the behavior of the parameters of the perturbed region in daytime and nighttime conditions is significantly different at the same radio flux density: under day conditions, the maximum electron concentration and temperature are at an altitude of ~45–55 km; in night ~80 km, with the temperature of heavy particles rapidly increasing, which leads to the occurrence of a gas-dynamic flow. Therefore, a special numerical algorithm are developed to solve two basic problems: kinetic and gas dynamic. Based on the altitude and temporal behavior of concentrations and temperatures, the algorithm makes it possible to determine the ionization and emission of the ionosphere in the visible and infrared spectral range, which makes it possible to evaluate the influence of the perturbed region on radio engineering and optoelectronic devices used in space technology.

    Views (last year): 17.
  7. Madera A.G.
    Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038

    A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.

  8. The second part presents numerical studies of the parameters of the lower ionosphere at altitudes of 40–90 km when heated by powerful high-frequency radio waves of various frequencies and powers. The problem statement is considered in the first part of the article. The main attention is paid to the interrelation between the energy and kinetic parameters of the disturbed $D$-region of the ionosphere in the processes that determine the absorption and transformation of the radio beam energy flux in space and time. The possibility of a significant difference in the behavior of the parameters of the disturbed region in the daytime and at nighttime, both in magnitude and in space-time distribution, is shown. In the absence of sufficiently reliable values of the rate constants for a number of important kinetic processes, numerical studies were carried out in stages with the gradual addition of individual processes and kinetic blocks corresponding at the same time to a certain physical content. It is shown that the energy thresholds for inelastic collisions of electrons with air molecules are the main ones. This approach made it possible to detect the effect of the emergence of a self-oscillating mode of changing parameters if the main channel for energy losses in inelastic processes is the most energy-intensive process — ionization. This effect may play a role in plasma studies using high-frequency inductive and capacitive discharges. The results of calculations of the ionization and optical parameters of the disturbed $D$-region for daytime conditions are presented. The electron temperature, density, emission coefficients in the visible and infrared ranges of the spectrum are obtained for various values of the power of the radio beam and its frequency in the lower ionosphere. The height-time distribution of the absorbed radiation power is calculated, which is necessary in studies of higher layers of the ionosphere. The influence on the electron temperature and on the general behavior of the parameters of energy losses by electrons on the excitation of vibrational and metastable states of molecules has been studied in detail. It is shown that under nighttime conditions, when the electron concentration begins at altitudes of about 80 km, and the concentration of heavy particles decreases by two orders of magnitude compared to the average $D$-region, large-scale gas-dynamic motion can develop with sufficient radio emission power The algorithm was developed based on the McCormack method and two-dimensional gas-dynamic calculations of the behavior of the parameters of the perturbed region were performed with some simplifications of the kinetics.

  9. Mamonov P.A., Krasilnikov P.M., Knox P.P., Rubin A.B.
    Modelling of conformational change within photosynthetic reaction center of Rb. sphaeroides bacteria
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 437-448

    A possible conformational change, which accompanies electron tranport in Rb. sphaeroides photosynthetic reaction center (RC), was studied using quantum-chemical approach. A kinetic model which takes into account two conformational states of RC is proposed. The model quantitatively describes experimental temperature dependencies of recombination reaction rate P+QA- → PQA. Quantum-chemical modeling of primary quinone (QA) binding site permits one to propose a minor shift of QA as a conformational change of interest. The shift is accompanied by break of a hydrogen bond between 4–C=O group of QA and histidine M219, and formation of a new hydrogen bond between QA and hydroxyl group of threonine M222. Characteristics of this conformational change were obtained from quantum-chemical calculations and match parameters of kinetic model in qualitative fashion.

    Views (last year): 2.
  10. The main aim, formulated in the first part of article, is to carry out detailed numerical studies of the chemical, ionization, optical, and temperature characteristics of the lower ionosphere perturbed by powerful radio emission. The brief review of the main experimental and theoretical researches of physical phenomena occurring in the ionosphere when it is heated by high-power high-frequency radio waves from heating facilities is given. The decisive role of the $D$-region of the ionosphere in the absorption of radio beam energy is shown. A detailed analysis of kinetic processes in the disturbed $D$-region, which is the most complex in kinetic terms, has been performed. It is shown that for a complete description of the ionization-chemical and optical characteristics of the disturbed region, it is necessary to take into account more than 70 components, which, according to their main physical content, can be conveniently divided into five groups. A kinetic model is presented to describe changes in the concentrations of components interacting (the total number of reactions is 259). The system of kinetic equations was solved using a semi-implicit numerical method specially adapted to such problems. Based on the proposed structure, a software package was developed in which the algorithm scheme allowed changing both the content of individual program blocks and their number, which made it possible to conduct detailed numerical studies of individual processes in the behavior of the parameters of the perturbed region. The complete numerical algorithm is based on the two-temperature approximation, in which the main attention was paid to the calculation of the electron temperature, since its behavior is determined by inelastic kinetic processes involving electrons. The formulation of the problem is of a rather general nature and makes it possible to calculate the parameters of the disturbed ionosphere in a wide range of powers and frequencies of radio emission. Based on the developed numerical technique, it is possible to study a wide range of phenomena both in the natural and disturbed ionosphere.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"