Результаты поиска по 'evolution model':
Найдено статей: 51
  1. Andruschenko V.A., Moiseeva D.S., Motorin A.A., Stupitsky E.L.
    Modeling the physical processes of a powerful nuclear explosion on an asteroid
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 861-877

    As part of the paper, a physical and theoretical analysis of the impact processes of various factors of a highaltitude and high-energy nuclear explosion on the asteroid in extra-atmospheric conditions of open space is done. It is shown that, in accordance with the energy and permeability of the plasma of explosion products, X-ray and gamma-neutron radiation, a layered structure with a different energy density depending on angular coordinates is formed on the surface of the asteroid. The temporal patterns of the energy transformation for each layer is clarified and the roles of various photo- and collision processes are determined. The effect of a high-speed plasma flow is erosive in nature, and the plasma pulse is transmitted to the asteroid. The paper presents that in a thin layer of x-ray absorption, the asteroid substance is heated to high temperatures and as a result of its expansion, a recoil impulse is formed, which is not decisive due to the small mass of the expanding high-temperature plasma. Calculations shows that the main impulse received by an asteroid is associated with the entrainment of a heated layer of a substance formed by a neutron flux (7.5 E 1014 g E cm/s). It is shown that an asteroid with a radius of ~100 m acquires a velocity of . 100 cm/s. The calculations were performed taking into account the explosion energy spent on the destruction of the amorphous structure of the asteroid material (~1 eV/atom = 3.8 E 1010 erg/g) and ionization in the region of the high-temperature layer. Based on a similar analysis, an approximation is obtained for estimating the average size of fragments in the event of the possible destruction of the asteroid by shock waves generated inside it under the influence of pressure impulses. A physical experiment was conducted in laboratory conditions, simulating the fragmentation of a stone asteroid and confirming the validity of the obtained dependence on the selected values of certain parameters. As a result of numerical studies of the effects of the explosion, carried out at different distances from the surface of the asteroid, it is shown that taking into account the real geometry of the spallation layer gives the optimal height for the formation of the maximum asteroid momentum by a factor of 1.5 greater than similar estimates according to the simplified model. A two-stage concept of the impact of nuclear explosions on an asteroid using radar guidance tools is proposed. The paper analyzes the possible impact of the emerging ionization interference on the radar tracking of the movement of large fragments of the asteroid in the space-time evolution of all elements of the studied dynamic system.

  2. Potapov D.I., Potapov I.I.
    Bank slope evolution in trapezoidal channel riverbed
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 581-592

    A mathematical model is formulated for the coastal slope erosion of sandy channel, which occurs under the action of a passing flood wave. The moving boundaries of the computational domain — the bottom surface and the free surface of the hydrodynamic flow — are determined from the solution of auxiliary differential equations. A change in the hydrodynamic flow section area for a given law of change in the flow rate requires a change in time of the turbulent viscosity averaged over the section. The bottom surface movement is determined from the Exner equation solution together with the equation of the bottom material avalanche movement. The Exner equation is closed by the original analytical model of traction loads movement. The model takes into account transit, gravitational and pressure mechanisms of bottom material movement and does not contain phenomenological parameters.

    Based on the finite element method, a discrete analogue of the formulated problem is obtained and an algorithm for its solution is proposed. An algorithm feature is control of the free surface movement influence of the flow and the flow rate on the process of determining the flow turbulent viscosity. Numerical calculations have been carried out, demonstrating qualitative and quantitative influence of these features on the determining process of the flow turbulent viscosity and the channel bank slope erosion.

    Data comparison on bank deformations obtained as a result of numerical calculations with known flume experimental data showed their agreement.

  3. Bykov N.V.
    A simulation model of connected automated vehicles platoon dynamics in a heterogeneous traffic flow
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1041-1058

    The gradual incorporation of automated vehicles into the global transport networks leads to the need to develop tools to assess the impact of this process on various aspects of traffic. This implies a more organized movement of automated vehicles which can form uniformly moving platoons. The influence of the formation and movement of these platoons on the dynamics of traffic flow is of great interest. The currently most developed traffic flow models are based on the cellular automaton approach. They are mainly developed in the direction of increasing accuracy. This inevitably leads to the complication of models, which in their modern form have significantly moved away from the original philosophy of cellular automata, which implies simplicity and schematicity of models at the level of evolution rules, leading, however, to a complex organized behavior of the system. In the present paper, a simulation model of connected automated vehicles platoon dynamics in a heterogeneous transport system is proposed, consisting of two types of agents (vehicles): human-driven and automated. The description of the temporal evolution of the system is based on modified rules 184 and 240 for elementary cellular automata. Human-driven vehicles move according to rule 184 with the addition of accidental braking, the probability of which depends on the distance to the vehicle in front. For automated vehicles, a combination of rules is used depending on the type of nearest neighbors, regardless of the distance to them, which brings non-local interaction to the model. At the same time, it is considered that a group of sequentially moving connected automated vehicles can form an organized platoon. The influence of the ratio of types of vehicles in the system on the characteristics of the traffic flow during free movement on a circular one-lane and two-lane roads, as well as in the presence of a traffic light, is studied. The simulation results show that the effect of platoon formation is significant for a freeway traffic flow; the presence of a traffic light reduces the positive effect by about half. The movement of platoons of connected automated vehicles on two-lane roads with the possibility of lane changing was also studied. It is shown that considering the types of neighboring vehicles (automated or human-driven) when changing lanes for automated vehicles has a positive effect on the characteristics of the traffic flow.

  4. Nikonov E.G., Pavlus M., Popovičová M.
    2D microscopic and macroscopic simulation of water and porous material interaction
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 77-86

    In various areas of science, technology, environment protection, construction, it is very important to study processes of porous materials interaction with different substances in different aggregation states. From the point of view of ecology and environmental protection it is particularly actual to investigate processes of porous materials interaction with water in liquid and gaseous phases. Since one mole of water contains 6.022140857 · 1023 molecules of H2O, macroscopic approaches considering the water vapor as continuum media in the framework of classical aerodynamics are mainly used to describe properties, for example properties of water vapor in the pore. In this paper we construct and use for simulation the macroscopic two-dimensional diffusion model [Bitsadze, Kalinichenko, 1980] describing the behavior of water vapor inside the isolated pore. Together with the macroscopic model it is proposed microscopic model of the behavior of water vapor inside the isolated pores. This microscopic model is built within the molecular dynamics approach [Gould et al., 2005]. In the microscopic model a description of each water molecule motion is based on Newton classical mechanics considering interactions with other molecules and pore walls. Time evolution of “water vapor – pore” system is explored. Depending on the external to the pore conditions the system evolves to various states of equilibrium, characterized by different values of the macroscopic characteristics such as temperature, density, pressure. Comparisons of results of molecular dynamic simulations with the results of calculations based on the macroscopic diffusion model and experimental data allow to conclude that the combination of macroscopic and microscopic approach could produce more adequate and more accurate description of processes of water vapor interaction with porous materials.

    Views (last year): 10.
  5. Burago N.G., Nikitin I.S.
    Algorithms of through calculation for damage processes
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 645-666

    The paper reviews the existing approaches to calculating the destruction of solids. The main attention is paid to algorithms using a unified approach to the calculation of deformation both for nondestructive and for the destroyed states of the material. The thermodynamic derivation of the unified rheological relationships taking into account the elastic, viscous and plastic properties of materials and describing the loss of the deformation resistance ability with the accumulation of microdamages is presented. It is shown that the mathematical model under consideration provides a continuous dependence of the solution on input parameters (parameters of the material medium, initial and boundary conditions, discretization parameters) with softening of the material.

    Explicit and implicit non-matrix algorithms for calculating the evolution of deformation and fracture development are presented. Non-explicit schemes are implemented using iterations of the conjugate gradient method, with the calculation of each iteration exactly coinciding with the calculation of the time step for two-layer explicit schemes. So, the solution algorithms are very simple.

    The results of solving typical problems of destruction of solid deformable bodies for slow (quasistatic) and fast (dynamic) deformation processes are presented. Based on the experience of calculations, recommendations are given for modeling the processes of destruction and ensuring the reliability of numerical solutions.

    Views (last year): 24.
  6. Doludenko A.N., Kulikov Y.M., Saveliev A.S.
    Сhaotic flow evolution arising in a body force field
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912

    This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.

  7. Aponin Yu.M., Aponina E.A.
    The invariance principle of La-Salle and mathematical models for the evolution of microbial populations
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 177-190

    A mathematical model for the evolution of microbial populations during prolonged cultivation in a chemostat has been constructed. This model generalizes the sequence of the well-known mathematical models of the evolution, in which such factors of the genetic variability were taken into account as chromosomal mutations, mutations in plasmid genes, the horizontal gene transfer, the plasmid loss due to cellular division and others. Liapunov’s function for the generic model of evolution is constructed. The existence proof of bounded, positive invariant and globally attracting set in the state space of the generic mathematical model for the evolution is presented because of the application of La-Salle’s theorem. The analytic description of this set is given. Numerical methods for estimate of the number of limit sets, its location and following investigation in the mathematical models for evolution are discussed.

    Views (last year): 8. Citations: 3 (RSCI).
  8. Fursov E.V., Kosilov A.T., Pryadilshchikov A.Y.
    Effect of the surface on characteristics of amorphization Ni-Ag system
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 263-269

    Molecular dynamics simulation using the embedded-atom method is applied to study the structural evolution of the particle diameter of 40 Å during the quenching process. Was carried comparative analysis of the structural reconstruction for the particle and the bulk models. Was a reduction in temperature of the beginning and end of the transformation of the particle. In formation of a percolation cluster from interpenetrating and contacting icosahedrons, for model of the particle, it is involved for 10 percent of atoms more, than for model of a bulk.

    Views (last year): 1. Citations: 1 (RSCI).
  9. Potapov I.I., Snigur K.S.
    Solving of the Exner equation for morphologically complex bed
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 449-461

    The Exner equation in conjunction phenomenological sediment transport models is widely used for mathematical modeling non-cohesive river bed. This approach allows to obtain an accurate solution without any difficulty if one models evolution of simple shape bed. However if one models evolution of complex shape bed with unstable soil the numerical instability occurs in some cases. It is difficult to detach this numerical instability from the natural physical instability of bed.

    This paper analyses the causes of numerical instability occurring while modeling evolution of complex shape bed by using the Exner equation and phenomenological sediment rate models. The paper shows that two kinds of indeterminateness may occur while solving numerically the Exner equation closed by phenomenological model of sediment transport. The first indeterminateness occurs in the bed area where sediment transport is transit and bed is not changed. The second indeterminateness occurs at the extreme point of bed profile when the sediment rate varies and the bed remains the same. Authors performed the closure of the Exner equation by the analytical sediment transport model, which allowed to transform the Exner equation to parabolic type equation. Analysis of the obtained equation showed that it’s numerical solving does not lead to occurring of the indeterminateness mentioned above. Parabolic form of the transformed Exner equation allows to apply the effective and stable implicit central difference scheme for this equation solving.

    The model problem of bed evolution in presence of periodic distribution of the bed shear stress is carried out. The authors used the explicit central difference scheme with and without filtration method application and implicit central difference scheme for numerical solution of the problem. It is shown that the explicit central difference scheme is unstable in the area of the bed profile extremum. Using the filtration method resulted to increased dissipation of the solution. The solution obtained by using the implicit central difference scheme corresponds to the distribution law of bed shear stress and is stable throughout the calculation area.

    Views (last year): 10.
  10. Il’ichev V.G., Dashkevich L.V.
    Optimal fishing and evolution of fish migration routes
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893

    A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"