All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Modeling the dynamics of plankton community considering phytoplankton toxicity
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1301-1323We propose a three-component discrete-time model of the phytoplankton-zooplankton community, in which toxic and non-toxic species of phytoplankton compete for resources. The use of the Holling functional response of type II allows us to describe an interaction between zooplankton and phytoplankton. With the Ricker competition model, we describe the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.). Many phytoplankton species, including diatom algae, are known not to release toxins if they are not damaged. Zooplankton pressure on phytoplankton decreases in the presence of toxic substances. For example, Copepods are selective in their food choices and avoid consuming toxin-producing phytoplankton. Therefore, in our model, zooplankton (predator) consumes only non-toxic phytoplankton species being prey, and toxic species phytoplankton only competes with non-toxic for resources.
We study analytically and numerically the proposed model. Dynamic mode maps allow us to investigate stability domains of fixed points, bifurcations, and the evolution of the community. Stability loss of fixed points is shown to occur only through a cascade of period-doubling bifurcations. The Neimark – Sacker scenario leading to the appearance of quasiperiodic oscillations is found to realize as well. Changes in intrapopulation parameters of phytoplankton or zooplankton can lead to abrupt transitions from regular to quasi-periodic dynamics (according to the Neimark – Sacker scenario) and further to cycles with a short period or even stationary dynamics. In the multistability areas, an initial condition variation with the unchanged values of all model parameters can shift the current dynamic mode or/and community composition.
The proposed discrete-time model of community is quite simple and reveals dynamics of interacting species that coincide with features of experimental dynamics. In particular, the system shows behavior like in prey-predator models without evolution: the predator fluctuations lag behind those of prey by about a quarter of the period. Considering the phytoplankton genetic heterogeneity, in the simplest case of two genetically different forms: toxic and non-toxic ones, allows the model to demonstrate both long-period antiphase oscillations of predator and prey and cryptic cycles. During the cryptic cycle, the prey density remains almost constant with fluctuating predators, which corresponds to the influence of rapid evolution masking the trophic interaction.
-
Mathematical modeling of neutron transfers in nuclear reactions considering spin-orbit interaction
Computer Research and Modeling, 2010, v. 2, no. 4, pp. 393-401Views (last year): 4.The difference scheme for numerical solution of a time-dependant system of two Schrödinger equations with the operator of a spin-orbit interaction for a two-component spinor wave function is offered on the basis of a split method for a time-dependant Schrödinger equations. The computer simulation of the external neutrons’ wave functions evolution with different values of the full moment projection upon internuclear axis and probabilities of their transfer are executed for head-on collisions of 18O and 58Ni nuclei.
-
Exact evolutionary dynamics on multi dimensional fitness landscape
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1269-1277Views (last year): 4.Crow–Kimura model is one of the famous models of population genetics. Last decade models with low-dimensional fitness landscape have been investigated. We consider the Crow–Kimura model of evolutionary dynamics on multi-dimensional fitness landscape with a single peak. We deduce exact solution for the dynamics, confirmed well by the numerics.
-
On the modeling of water obstacles overcoming by Rangifer tarandus L
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 895-910Seasonal migrations and herd instinct are traditionally recognized as wild reindeer (Rangifer tarandus L.) species-specific behavioral signs. These animals are forced to overcome water obstacles during the migrations. Behaviour peculiarities are considered as the result of the selection process, which has chosen among the sets of strategies, as the only evolutionarily stable one, determining the reproduction and biological survival of wild reindeer as a species. Natural processes in the Taimyr population wild reindeer are currently occurring against the background of an increase in the influence of negative factors due to the escalation of the industrial development of the Arctic. That is why the need to identify the ethological features of these animals completely arose. This paper presents the results of applying the classical methods of the theory of optimal control and differential games to the wild reindeer study of the migration patterns in overcoming water barriers, including major rivers. Based on these animals’ ethological features and behavior forms, the herd is presented as a controlled dynamic system, which presents also two classes of individuals: the leader and the rest of the herd, for which their models, describing the trajectories of their movement, are constructed. The models are based on hypotheses, which are the mathematical formalization of some animal behavior patterns. This approach made it possible to find the trajectory of the important one using the methods of the optimal control theory, and in constructing the trajectories of other individuals, apply the principle of control with a guide. Approbation of the obtained results, which can be used in the formation of a common “platform” for the adaptive behavior models systematic construction and as a reserve for the cognitive evolution models fundamental development, is numerically carried out using a model example with observational data on the Werchnyaya Taimyra River.
-
Stochastic simulation of chemical reactions in subdiffusion medium
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 87-104Theory of anomalous diffusion, which describe a vast number of transport processes with power law mean squared displacement, is actively advancing in recent years. Diffusion of liquids in porous media, carrier transport in amorphous semiconductors and molecular transport in viscous environments are widely known examples of anomalous deceleration of transport processes compared to the standard model.
Direct Monte Carlo simulation is a convenient tool for studying such processes. An efficient stochastic simulation algorithm is developed in the present paper. It is based on simple renewal process with interarrival times that have power law asymptotics. Analytical derivations show a deep connection between this class of random process and equations with fractional derivatives. The algorithm is further generalized by coupling it with chemical reaction simulation. It makes stochastic approach especially useful, because the exact form of integrodifferential evolution equations for reaction — subdiffusion systems is still a matter of debates.
Proposed algorithm relies on non-markovian random processes, hence one should carefully account for qualitatively new effects. The main question is how molecules leave the system during chemical reactions. An exact scheme which tracks all possible molecule combinations for every reaction channel is computationally infeasible because of the huge number of such combinations. It necessitates application of some simple heuristic procedures. Choosing one of these heuristics greatly affects obtained results, as illustrated by a series of numerical experiments.
-
About the Evolution of Perturbations Caused by the Movement of Meteoroids in the Earth’s Atmosphere
Computer Research and Modeling, 2013, v. 5, no. 6, pp. 993-1030Views (last year): 1. Citations: 1 (RSCI).On the basis of the MGD equations we consider 2D- and 3D- nonstationary problems about the evolution of perturbations in the lower atmosphere and the Earth’s ionosphere which are caused by the movement of large meteoroids along gently sloping paths of the entry with the simulation of their destruction by the momentary increase of the midship at the point of the pressure head maximum. According to the results of our numerical investigation we obtain and analyze the detailed spatial-temporal distributions of the main parameters of the plasma flows from which in particular a number of phenomena that are similar to those seen in the Chelyabinsk phenomenon follow.
-
Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787Views (last year): 6.By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.
-
Computer and physical-chemical modeling of the evolution of a fractal corrosion front
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 105-124Corrosion damage to metals and alloys is one of the main problems of strength and durability of metal structures and products operated in contact with chemically aggressive environments. Recently, there has been a growing interest in computer modeling of the evolution of corrosion damage, especially pitting corrosion, for a deeper understanding of the corrosion process, its impact on the morphology, physical and chemical properties of the surface and mechanical strength of the material. This is mainly due to the complexity of analytical and high cost of experimental in situ studies of real corrosion processes. However, the computing power of modern computers allows you to calculate corrosion with high accuracy only on relatively small areas of the surface. Therefore, the development of new mathematical models that allow calculating large areas for predicting the evolution of corrosion damage to metals is currently an urgent problem.
In this paper, the evolution of the corrosion front in the interaction of a polycrystalline metal surface with a liquid aggressive medium was studied using a computer model based on a cellular automat. A distinctive feature of the model is the specification of the solid body structure in the form of Voronoi polygons used for modeling polycrystalline alloys. Corrosion destruction was performed by setting the probability function of the transition between cells of the cellular automaton. It was taken into account that the corrosion strength of the grains varies due to crystallographic anisotropy. It is shown that this leads to the formation of a rough phase boundary during the corrosion process. Reducing the concentration of active particles in a solution of an aggressive medium during a chemical reaction leads to corrosion attenuation in a finite number of calculation iterations. It is established that the final morphology of the phase boundary has a fractal structure with a dimension of 1.323 ± 0.002 close to the dimension of the gradient percolation front, which is in good agreement with the fractal dimension of the etching front of a polycrystalline aluminum-magnesium alloy AlMg6 with a concentrated solution of hydrochloric acid. It is shown that corrosion of a polycrystalline metal in a liquid aggressive medium is a new example of a topochemical process, the kinetics of which is described by the Kolmogorov–Johnson– Meil–Avrami theory.
-
Simulation of spin wave amplification using the method of characteristics to the transport equation
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 795-803The paper presents an analysis of the nonlinear equation of spin wave transport by the method of characteristics. The conclusion of a new mathematical model of spin wave propagation is presented for the solution of which the characteristic is applied. The behavior analysis of the behavior of the real and imaginary parts of the wave and its amplitude is performed. The phase portraits demonstrate the dependence of the desired function on the nonlinearity coefficient. It is established that the real and imaginary parts of the wave oscillate by studying the nature of the evolution of the initial wave profile by the phase plane method. The transition of trajectories from an unstable focus to a limiting cycle, which corresponds to the oscillation of the real and imaginary parts, is shown. For the amplitude of the wave, such a transition is characterized by its amplification or attenuation (depending on the nonlinearity coefficient and the chosen initial conditions) up to a certain threshold value. It is shown that the time of the transition process from amplification (attenuation) to stabilization of the amplitude also depends on the nonlinearity parameter. It was found out that at the interval of amplification of the amplitude of the spin wave, the time of the transition process decreases, and lower amplitude values correspond to higher parameters of nonlinearity.
-
On possible changes in phytocenoses of the Sea of Azov under climate warming
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 981-991Views (last year): 11.Base long-term modern scenarios of hydrochemical and temperature regimes of the Sea of Azov were considered. New schemes of modeling mechanisms of algal adaptation to changes in the hydrochemical regime and temperature were proposed. In comparison to the traditional ecological-evolutionary schemes, these models have a relatively small dimension, high speed and allow carrying out various calculations on long-term perspective (evolutionally significant times). Based on the ecology-evolutionary model of the lower trophic levels the impact of these environmental factors on the dynamics and microevolution of algae in the Sea of Azov was estimated. In each scenario, the calculations were made for 100 years, with the final values of the variables and parameters not depending on the choice of the initial values. In the process of such asymptotic computer analysis, it was found that as a result of climate warming and temperature adaptation of organisms, the average annual biomass of thermophilic algae (Pyrrophyta and Cyanophyta) naturally increases. However, for a number of diatom algae (Bacillariophyta), even with their temperature adaptation, the average annual biomass may unexpectedly decrease. Probably, this phenomenon is associated with a toughening of competition between species with close temperature parameters of existence. The influence of the variation in the chemical composition of the Don River’s flow on the dynamics of nutrients and algae of the Sea of Azov was also investigated. It turned out that the ratio of organic forms of nitrogen and phosphorus in sea waters varies little. This stabilization phenomenon will take place for all high-productive reservoirs with low flow, due to autochthonous origin of larger part of organic matter in water bodies of this type.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"