Результаты поиска по 'nutrients':
Найдено статей: 17
  1. In the paper the statistical relationships between the size and production characteristics of phytoplankton and zooplankton of the Vistula and Curonian lagoons, the Baltic Sea, were investigated. Research phytoplankton and zooplankton within the Russian part of the area of the Vistula and the Curonian lagoon was carried out on the monthly basis (from April to November) within the framework of long-term monitoring program on evaluating of ecological status of the lagoons. The size structure of plankton is the basis for understanding of the development of production processes, mechanisms of formation of the plankton species diversity and functioning of the lagoon ecosystems. As results of the work it was found that the maximum rate of photosynthesis and the integral value of the primary production with a change in cell volume of phytoplankton are changed according to a power law. The result shows that the smaller the size of algal cells in phytoplankton communities the more actively occur metabolism and the more effective they assimilate the solar energy. It is shown that the formation of plankton species diversity in ecosystems of lagoons is closely linked with the size structure of plankton communities and with features of development of the production processes. It is proposed the structure of a spatially homogenous mathematical model of the plankton food chain for the lagoon ecosystems taking into account the size spectrum and the characteristics of phytoplankton and zooplankton. The model parameters are the sizedependent indicators allometrically linked with average volumes of cells and organisms in different ranges of their sizes. In the model the algorithm for changes over time the coefficients of food preferences in the diet of zooplankton was proposed. Developed the size-dependent mathematical model of aquatic ecosystems allows to consider the impact of turbulent exchange on the size structure and temporal dynamics of the plankton food chain of the Vistula and Curonian lagoons. The model can be used to study the different regimes of dynamic behavior of plankton systems depending on the changes in the values of its parameters and external influences, as well as to quantify the redistribution of matter flows in ecosystems of the lagoons.

    Views (last year): 9.
  2. Abakumov A.I., Izrailsky Y.G.
    Models of phytoplankton distribution over chlorophyll in various habitat conditions. Estimation of aquatic ecosystem bioproductivity
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1177-1190

    A model of the phytoplankton abundance dynamics depending on changes in the content of chlorophyll in phytoplankton under the influence of changing environmental conditions is proposed. The model takes into account the dependence of biomass growth on environmental conditions, as well as on photosynthetic chlorophyll activity. The light and dark stages of photosynthesis have been identified. The processes of chlorophyll consumption during photosynthesis in the light and the growth of chlorophyll mass together with phytoplankton biomass are described. The model takes into account environmental conditions such as mineral nutrients, illumination and water temperature. The model is spatially distributed, the spatial variable corresponds to mass fraction of chlorophyll in phytoplankton. Thereby possible spreads of the chlorophyll contents in phytoplankton are taken into consideration. The model calculates the density distribution of phytoplankton by the proportion of chlorophyll in it. In addition, the rate of production of new phytoplankton biomass is calculated. In parallel, point analogs of the distributed model are considered. The diurnal and seasonal (during the year) dynamics of phytoplankton distribution by chlorophyll fraction are demonstrated. The characteristics of the rate of primary production in daily or seasonally changing environmental conditions are indicated. Model characteristics of the dynamics of phytoplankton biomass growth show that in the light this growth is about twice as large as in the dark. It shows, that illumination significantly affects the rate of production. Seasonal dynamics demonstrates an accelerated growth of biomass in spring and autumn. The spring maximum is associated with warming under the conditions of biogenic substances accumulated in winter, and the autumn, slightly smaller maximum, with the accumulation of nutrients during the summer decline in phytoplankton biomass. And the biomass in summer decreases, again due to a deficiency of nutrients. Thus, in the presence of light, mineral nutrition plays the main role in phytoplankton dynamics.

    In general, the model demonstrates the dynamics of phytoplankton biomass, qualitatively similar to classical concepts, under daily and seasonal changes in the environment. The model seems to be suitable for assessing the bioproductivity of aquatic ecosystems. It can be supplemented with equations and terms of equations for a more detailed description of complex processes of photosynthesis. The introduction of variables in the physical habitat space and the conjunction of the model with satellite information on the surface of the reservoir leads to model estimates of the bioproductivity of vast marine areas. Introduction of physical space variables habitat and the interface of the model with satellite information about the surface of the basin leads to model estimates of the bioproductivity of vast marine areas.

  3. Bessonov N.M., Bocharov G.A., Bouchnita A., Volpert V.A.
    Hybrid models in biomedical applications
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309

    The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.

    Views (last year): 25.
  4. Korolev S.A., Maykov D.V.
    Solution of the problem of optimal control of the process of methanogenesis based on the Pontryagin maximum principle
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 357-367

    The paper presents a mathematical model that describes the process of obtaining biogas from livestock waste. This model describes the processes occurring in a biogas plant for mesophilic and thermophilic media, as well as for continuous and periodic modes of substrate inflow. The values of the coefficients of this model found earlier for the periodic mode, obtained by solving the problem of model identification from experimental data using a genetic algorithm, are given.

    For the model of methanogenesis, an optimal control problem is formulated in the form of a Lagrange problem, whose criterial functionality is the output of biogas over a certain period of time. The controlling parameter of the task is the rate of substrate entry into the biogas plant. An algorithm for solving this problem is proposed, based on the numerical implementation of the Pontryagin maximum principle. In this case, a hybrid genetic algorithm with an additional search in the vicinity of the best solution using the method of conjugate gradients was used as an optimization method. This numerical method for solving an optimal control problem is universal and applicable to a wide class of mathematical models.

    In the course of the study, various modes of submission of the substrate to the digesters, temperature environments and types of raw materials were analyzed. It is shown that the rate of biogas production in the continuous feed mode is 1.4–1.9 times higher in the mesophilic medium (1.9–3.2 in the thermophilic medium) than in the periodic mode over the period of complete fermentation, which is associated with a higher feed rate of the substrate and a greater concentration of nutrients in the substrate. However, the yield of biogas during the period of complete fermentation with a periodic mode is twice as high as the output over the period of a complete change of the substrate in the methane tank at a continuous mode, which means incomplete processing of the substrate in the second case. The rate of biogas formation for a thermophilic medium in continuous mode and the optimal rate of supply of raw materials is three times higher than for a mesophilic medium. Comparison of biogas output for various types of raw materials shows that the highest biogas output is observed for waste poultry farms, the least — for cattle farms waste, which is associated with the nutrient content in a unit of substrate of each type.

  5. Kovalenko S.Yu., Yusubalieva G.M.
    Survival task for the mathematical model of glioma therapy with blood-brain barrier
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123

    The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.

    Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.

    The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.

    The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.

    Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.

    Views (last year): 14.
  6. Suganya G., Senthamarai R.
    Analytical Approximation of a Nonlinear Model for Pest Control in Coconut Trees by the Homotopy Analysis Method
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1093-1106

    Rugose spiraling whitefly (RSW) is one of the major pests which affects the coconut trees. It feeds on the tree by sucking up the water content as well as the essential nutrients from leaves. It also forms sooty mold in leaves due to which the process of photosynthesis is inhibited. Biocontrol of pest is harmless for trees and crops. The experimental results in literature reveal that Pseudomallada astur is a potential predator for this pest. We investigate the dynamics of predator, Pseudomallada astur’s interaction with rugose spiralling whitefly, Aleurodicus rugioperculatus in coconut trees using a mathematical model. In this system of ordinary differential equation, the pest-predator interaction is modeled using Holling type III functional response. The parametric values are calculated from the experimental results and are tabulated. An approximate analytical solution for the system has been derived. The homotopy analysis method proves to be a suitable method for creating solutions that are valid even for moderate to large parameter values, hence we employ the same to solve this nonlinear model. The $\hbar$-curves, which give the admissible region of $\hbar$, are provided to validate the region of convergence. We have derived the approximate solution at fifth order and stopped at this order since we obtain a more approximate solution in this iteration. Numerical simulation is obtained through MATLAB. The analytical results are compared with numerical simulation and are found to be in good agreement. The biological interpretation of figures implies that the use of a predator reduces the whitefly’s growth to a greater extent.

  7. Giricheva E.E.
    Modeling of plankton community state with density-dependent death and spatial activity of zooplankton
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 549-560

    A vertically distributed three-component model of marine ecosystem is considered. State of the plankton community with nutrients is analyzed under the active movement of zooplankton in a vertical column of water. The necessary conditions of the Turing instability in the vicinity of the spatially homogeneous equilibrium are obtained. Stability of the spatially homogeneous equilibrium, the Turing instability and the oscillatory instability are examined depending on the biological characteristics of zooplankton and spatial movement of plankton. It is shown that at low values of zooplankton grazing rate and intratrophic interaction rate the system is Turing instable when the taxis rate is low. Stabilization occurs either through increased decline of zooplankton either by increasing the phytoplankton diffusion. With the increasing rate of consumption of phytoplankton range of parameters that determine the stability is reduced. A type of instability depends on the phytoplankton diffusion. For large values of diffusion oscillatory instability is observed, with a decrease in the phytoplankton diffusion zone of Turing instability is increases. In general, if zooplankton grazing rate is faster than phytoplankton growth rate the spatially homogeneous equilibrium is Turing instable or oscillatory instable. Stability is observed only at high speeds of zooplankton departure or its active movements. With the increase in zooplankton search activity spatial distribution of populations becomes more uniform, increasing the rate of diffusion leads to non-uniform spatial distribution. However, under diffusion the total number of the population is stabilized when the zooplankton grazing rate above the rate of phytoplankton growth. In general, at low rate of phytoplankton consumption the spatial structures formation is possible at low rates of zooplankton decline and diffusion of all the plankton community. With the increase in phytoplankton predation rate the phytoplankton diffusion and zooplankton spatial movement has essential effect on the spatial instability.

    Views (last year): 6.
  8. Kuznetsov M.B., Kolobov A.V.
    Mathematical investigation of antiangiogenic monotherapy effect on heterogeneous tumor progression
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 487-501

    In the last decade along with classical cytotoxic agents, antiangiogenic drugs have been actively used in cancer chemotherapy. They are not aimed at killing malignant cells, but at blocking the process of angiogenesis, i.e., the growth of new vessels in the tumor and its surrounding tissues. Agents that stimulate angiogenesis, in particular, vascular endothelial growth factor, are actively produced by tumor cells in the state of metabolic stress. It is believed that blocking of tumor neovascularization should lead to a shortage of nutrients flow to the tumor, and thus can stop, or at least significantly slow down its growth. Clinical practice on the use of first antiangiogenic drug bevacizumab has shown that in some cases such therapy does not influence the growth rate of the tumor, whereas for other types of malignant neoplasms antiangiogenic therapy has a high antitumor effect. However, it has been shown that along with successful slowing of tumor growth, therapy with bevacizumab can induce directed tumor progression to a more invasive, and therefore more lethal, type. These data require theoretical analysis and rationale for the evolutionary factors that lead to the observation of epithelial-mesenchymal transition. For this purpose we have developed a spatially distributed mathematical model of growth and antiangiogenic therapy of heterogeneous tumor consisting of two subpopulations of malignant cells. One of subpopulations possesses inherent characteristics of epithelial phenotype, i.e., low motility and high proliferation rate, the other one corresponds to mesenchymal phenotype having high motility and low proliferation rate. We have performed the investigation of competition between these subpopulations of heterogeneous tumor in the cases of tumor growth without therapy and under bevacizumab monotherapy. It is shown that constant use of antiangiogenic drug leads to an increase of the region in parameter space, where the dominance of mesenchymal phenotype takes place, i.e., within a certain range of parameters in the absence of therapy epithelial phenotype is dominant but during bevacizumab administration mesenchymal phenotype begins to dominate. This result provides a theoretical basis of the clinically observed directed tumor progression to more invasive type under antiangiogenic therapy.

    Views (last year): 10. Citations: 2 (RSCI).
  9. Il’ichev V.G., Kulygin V.V., Dashkevich L.V.
    On possible changes in phytocenoses of the Sea of Azov under climate warming
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 981-991

    Base long-term modern scenarios of hydrochemical and temperature regimes of the Sea of Azov were considered. New schemes of modeling mechanisms of algal adaptation to changes in the hydrochemical regime and temperature were proposed. In comparison to the traditional ecological-evolutionary schemes, these models have a relatively small dimension, high speed and allow carrying out various calculations on long-term perspective (evolutionally significant times). Based on the ecology-evolutionary model of the lower trophic levels the impact of these environmental factors on the dynamics and microevolution of algae in the Sea of Azov was estimated. In each scenario, the calculations were made for 100 years, with the final values of the variables and parameters not depending on the choice of the initial values. In the process of such asymptotic computer analysis, it was found that as a result of climate warming and temperature adaptation of organisms, the average annual biomass of thermophilic algae (Pyrrophyta and Cyanophyta) naturally increases. However, for a number of diatom algae (Bacillariophyta), even with their temperature adaptation, the average annual biomass may unexpectedly decrease. Probably, this phenomenon is associated with a toughening of competition between species with close temperature parameters of existence. The influence of the variation in the chemical composition of the Don River’s flow on the dynamics of nutrients and algae of the Sea of Azov was also investigated. It turned out that the ratio of organic forms of nitrogen and phosphorus in sea waters varies little. This stabilization phenomenon will take place for all high-productive reservoirs with low flow, due to autochthonous origin of larger part of organic matter in water bodies of this type.

    Views (last year): 11.
  10. Leonov A.V., Kоltovskaya Е.V., Chicherina О.V.
    Biohydrochemical portrait of the White Sea
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 125-160

    The biohydrochemical portrait of the White Sea is constructed on the CNPSi-model calculations based on long-term mean annual observations (average monthly hydrometeorological, hydrochemical and hydrobiological parameters of the marine environment) as well as on updated information on the nutrient input to the sea with the runoff of the main river tributaries (Niva, Onega, Northern Dvina, Mezen, Kem, Keret). Parameters of the marine environment are temperature, light, transparency, and biogenic load. Ecological characteristics of the sea “portrait” were calculated for nine marine areas (Kandalaksha, Onega, Dvinsky, Mezensky Bays, Solovetsky Islands, Basin, Gorlot, Voronka, Chupa Bay), these are: the concentration changes of organic and mineral compounds of biogenic elements (C, N, P, Si), the biomass of organisms of the lower trophic level (heterotrophic bacteria, diatomic phytoplankton, herbivorous and predatory zooplankton) and other ones (rates of substance concentration and organism biomass changes, internal and external substance flows, balances of individual substances and nutrients as a whole). Parameters of the marine environment state (water temperature, ratio of mineral fractions N < P) and dominant diatom phytoplankton in the sea (abundance, production, biomass, chlorophyll content a) were calculated and compared with the results of individual surveys (for 1972–1991 and 2007–2012) of the White Sea water areas. The methods for estimating the values of these parameters from observations and calculations differ, however, the calculated values of the phytoplankton state are comparable with the measurements and are similar to the data given in the literature. Therefore, according to the literature data, the annual production of diatoms in the White Sea is estimated at 1.5–3 million tons C (at a vegetation period of 180 days), and according to calculations it is ~2 and 3.5 million tons C for vegetation period of 150 and 180 days respectively.

    Views (last year): 15. Citations: 1 (RSCI).
Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"