All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Modeling the spatial scenario of the transition to chaos via torus breakup in the problem with concentration-dependent diffusion
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 9-31In the last decades, universal scenarios of the transition to chaos in dynamic systems have been well studied. The scenario of the transition to chaos is defined as a sequence of bifurcations that occur in the system under the variation one of the governing parameters and lead to a qualitative change in dynamics, starting from the regular mode and ending with chaotic behavior. Typical scenarios include a cascade of period doubling bifurcations (Feigenbaum scenario), the breakup of a low-dimensional torus (Ruelle–Takens scenario), and the transition to chaos through the intermittency (Pomeau–Manneville scenario). In more complicated spatially distributed dynamic systems, the complexity of dynamic behavior growing with a parameter change is closely intertwined with the formation of spatial structures. However, the question of whether the spatial and temporal axes could completely exchange roles in some scenario still remains open. In this paper, for the first time, we propose a mathematical model of convection–diffusion–reaction, in which a spatial transition to chaos through the breakup of the quasi–periodic regime is realized in the framework of the Ruelle–Takens scenario. The physical system under consideration consists of two aqueous solutions of acid (A) and base (B), initially separated in space and placed in a vertically oriented Hele–Shaw cell subject to the gravity field. When the solutions are brought into contact, the frontal neutralization reaction of the second order A + B $\to$ C begins, which is accompanied by the production of salt (C). The process is characterized by a strong dependence of the diffusion coefficients of the reagents on their concentration, which leads to the appearance of two local zones of reduced density, in which chemoconvective fluid motions develop independently. Although the layers, in which convection develops, all the time remain separated by the interlayer of motionless fluid, they can influence each other via a diffusion of reagents through this interlayer. The emerging chemoconvective structure is the modulated standing wave that gradually breaks down over time, repeating the sequence of the bifurcation chain of the Ruelle–Takens scenario. We show that during the evolution of the system one of the spatial axes, directed along the reaction front, plays the role of time, and time itself starts to play the role of a control parameter.
-
Cosmological models of the Universe without a Beginning and without a singularity
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.
These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.
In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.
In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.
The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.
In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.
We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.
In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.
But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.
It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.
The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.
-
On the kinetics of entropy of a system with discrete microscopic states
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1207-1236An isolated system, which possesses a discrete set of microscopic states, is considered. The system performs spontaneous random transitions between the microstates. Kinetic equations for the probabilities of the system staying in various microstates are formulated. A general dimensionless expression for entropy of such a system, which depends on the probability distribution, is considered. Two problems are stated: 1) to study the effect of possible unequal probabilities of different microstates, in particular, when the system is in its internal equilibrium, on the system entropy value, and 2) to study the kinetics of microstate probability distribution and entropy evolution of the system in nonequilibrium states. The kinetics for the rates of transitions between the microstates is assumed to be first-order. Two variants of the effects of possible nonequiprobability of the microstates are considered: i) the microstates form two subgroups the probabilities of which are similar within each subgroup but differ between the subgroups, and ii) the microstate probabilities vary arbitrarily around the point at which they are all equal. It is found that, under a fixed total number of microstates, the deviations of entropy from the value corresponding to the equiprobable microstate distribution are extremely small. The latter is a rigorous substantiation of the known hypothesis about the equiprobability of microstates under the thermodynamic equilibrium. On the other hand, based on several characteristic examples, it is shown that the structure of random transitions between the microstates exerts a considerable effect on the rate and mode of the establishment of the system internal equilibrium, on entropy time dependence and expression of the entropy production rate. Under definite schemes of these transitions, there are possibilities of fast and slow components in the transients and of the existence of transients in the form of damped oscillations. The condition of universality and stability of equilibrium microstate distribution is that for any pair of microstates, a sequence of transitions should exist, which provides the passage from one microstate to next, and, consequently, any microstate traps should be absent.
-
Simulation of lightning initiation on the basis of dynamical grap
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 125-147Despite numerous achievements of modern science the problem of lightning initiation in an electrodeless thundercloud, the maximum electric field strength inside which is approximately an order of magnitude lower than the dielectric strength of air, remains unsolved. Although there is no doubt that discharge activity begins with the appearance of positive streamers, which can develop under approximately half the threshold electric field as compared to negative ones, it remains unexplored how cold weakly conducting streamer systems unite in a joint hot well-conducting leader channel capable of self-propagation due to effective polarization in a relatively small external field. In this study, we present a self-organizing transport model which is applied to the case of electric discharge tree formation in a thundercloud. So, the model is aimed at numerical simulation of the initial stage of lightning discharge development. Among the innovative features of the model are the absence of grid spacing, high spatiotemporal resolution, and consideration of temporal evolution of electrical parameters of transport channels. The model takes into account the widely known asymmetry between threshold fields needed for positive and negative streamers development. In our model, the resulting well-conducting leader channel forms due to collective effect of combining the currents of tens of thousands of interacting streamer channels each of which initially has negligible conductivity and temperature that does not differ from the ambient one. The model bipolar tree is a directed graph (it has both positive and negative parts). It has morphological and electrodynamic characteristics which are intermediate between laboratory long spark and developed lightning. The model has universal character which allows to use it in other tasks related to the study of transport (in the broad sense of the word) networks.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"