All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Integration the relativistic wave equations in Bianchi IX cosmology model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.
Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.
The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.
Keywords: noncommutative integration, Bianchi IX.Views (last year): 5. -
Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 9-22The paper presents a numerical solution to the heat wave motion problem for a degenerate second-order nonlinear parabolic equation with a source term. The nonlinearity is conditioned by the power dependence of the heat conduction coefficient on temperature. The problem for the case of two spatial variables is considered with the boundary condition specifying the heat wave motion law. A new solution algorithm based on an expansion in radial basis functions and the boundary element method is proposed. The solution is constructed stepwise in time with finite difference time approximation. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is solved. The solution to this problem is constructed iteratively as the sum of a particular solution to the nonhomogeneous equation and a solution to the corresponding homogeneous equation satisfying the boundary conditions. The homogeneous equation is solved by the boundary element method. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The calculation algorithm is optimized by parallelizing the computations. The algorithm is implemented as a program written in the C++ language. The parallel computations are organized by using the OpenCL standard, and this allows one to run the same parallel code either on multi-core CPUs or on graphic CPUs. Test cases are solved to evaluate the effectiveness of the proposed solution method and the correctness of the developed computational technique. The calculation results are compared with known exact solutions, as well as with the results we obtained earlier. The accuracy of the solutions and the calculation time are estimated. The effectiveness of using various systems of radial basis functions to solve the problems under study is analyzed. The most suitable system of functions is selected. The implemented complex computational experiment shows higher calculation accuracy of the proposed new algorithm than that of the previously developed one.
-
Modeling time series trajectories using the Liouville equation
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 585-598This paper presents algorithm for modeling set of trajectories of non-stationary time series, based on a numerical scheme for approximating the sample density of the distribution function in a problem with fixed ends, when the initial distribution for a given number of steps transforms into a certain final distribution, so that at each step the semigroup property of solving the Liouville equation is satisfied. The model makes it possible to numerically construct evolving densities of distribution functions during random switching of states of the system generating the original time series.
The main problem is related to the fact that with the numerical implementation of the left-hand differential derivative in time, the solution becomes unstable, but such approach corresponds to the modeling of evolution. An integrative approach is used while choosing implicit stable schemes with “going into the future”, this does not match the semigroup property at each step. If, on the other hand, some real process is being modeled, in which goal-setting presumably takes place, then it is desirable to use schemes that generate a model of the transition process. Such model is used in the future in order to build a predictor of the disorder, which will allow you to determine exactly what state the process under study is going into, before the process really went into it. The model described in the article can be used as a tool for modeling real non-stationary time series.
Steps of the modeling scheme are described further. Fragments corresponding to certain states are selected from a given time series, for example, trends with specified slope angles and variances. Reference distributions of states are compiled from these fragments. Then the empirical distributions of the duration of the system’s stay in the specified states and the duration of the transition time from state to state are determined. In accordance with these empirical distributions, a probabilistic model of the disorder is constructed and the corresponding trajectories of the time series are modeled.
-
Procedure for constructing of explicit, implicit and symmetric simplectic schemes for numerical solving of Hamiltonian systems of equations
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 861-871Views (last year): 11.Equations of motion in Newtonian and Hamiltonian forms are used for classical molecular dynamics simulation of particle system time evolution. When Newton equations of motion are used for finding of particle coordinates and velocities in $N$-particle system it takes to solve $3N$ ordinary differential equations of second order at every time step. Traditionally numerical schemes of Verlet method are used for solving Newtonian equations of motion of molecular dynamics. A step of integration is necessary to decrease for Verlet numerical schemes steadiness conservation on sufficiently large time intervals. It leads to a significant increase of the volume of calculations. Numerical schemes of Verlet method with Hamiltonian conservation control (the energy of the system) at every time moment are used in the most software packages of molecular dynamics for numerical integration of equations of motion. It can be used two complement each other approaches to decrease of computational time in molecular dynamics calculations. The first of these approaches is based on enhancement and software optimization of existing software packages of molecular dynamics by using of vectorization, parallelization and special processor construction. The second one is based on the elaboration of efficient methods for numerical integration for equations of motion. A procedure for constructing of explicit, implicit and symmetric symplectic numerical schemes with given approximation accuracy in relation to integration step for solving of molecular dynamic equations of motion in Hamiltonian form is proposed in this work. The approach for construction of proposed in this work procedure is based on the following points: Hamiltonian formulation of equations of motion; usage of Taylor expansion of exact solution; usage of generating functions, for geometrical properties of exact solution conservation, in derivation of numerical schemes. Numerical experiments show that obtained in this work symmetric symplectic third-order accuracy scheme conserves basic properties of the exact solution in the approximate solution. It is more stable for approximation step and conserves Hamiltonian of the system with more accuracy at a large integration interval then second order Verlet numerical schemes.
-
Direct multiplicative methods for sparse matrices. Quadratic programming
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 407-420Views (last year): 32.A numerically stable direct multiplicative method for solving systems of linear equations that takes into account the sparseness of matrices presented in a packed form is considered. The advantage of the method is the calculation of the Cholesky factors for a positive definite matrix of the system of equations and its solution within the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made to the position of the next processed row of the matrix, which allows using static data storage formats. The solution of the system of linear equations by a direct multiplicative algorithm is, like the solution with LU-decomposition, just another scheme for implementing the Gaussian elimination method.
The calculation of the Cholesky factors for a positive definite matrix of the system and its solution underlies the construction of a new mathematical formulation of the unconditional problem of quadratic programming and a new form of specifying necessary and sufficient conditions for optimality that are quite simple and are used in this paper to construct a new mathematical formulation for the problem of quadratic programming on a polyhedral set of constraints, which is the problem of finding the minimum distance between the origin ordinate and polyhedral boundary by means of a set of constraints and linear algebra dimensional geometry.
To determine the distance, it is proposed to apply the known exact method based on solving systems of linear equations whose dimension is not higher than the number of variables of the objective function. The distances are determined by the construction of perpendiculars to the faces of a polyhedron of different dimensions. To reduce the number of faces examined, the proposed method involves a special order of sorting the faces. Only the faces containing the vertex closest to the point of the unconditional extremum and visible from this point are subject to investigation. In the case of the presence of several nearest equidistant vertices, we investigate a face containing all these vertices and faces of smaller dimension that have at least two common nearest vertices with the first face.
-
One method for minimization a convex Lipschitz-continuous function of two variables on a fixed square
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 379-395Views (last year): 34.In the article we have obtained some estimates of the rate of convergence for the recently proposed by Yu. E.Nesterov method of minimization of a convex Lipschitz-continuous function of two variables on a square with a fixed side. The idea of the method is to divide the square into smaller parts and gradually remove them so that in the remaining sufficiently small part. The method consists in solving auxiliary problems of one-dimensional minimization along the separating segments and does not imply the calculation of the exact value of the gradient of the objective functional. The main result of the paper is proved in the class of smooth convex functions having a Lipschitz-continuous gradient. Moreover, it is noted that the property of Lipschitzcontinuity for gradient is sufficient to require not on the whole square, but only on some segments. It is shown that the method can work in the presence of errors in solving auxiliary one-dimensional problems, as well as in calculating the direction of gradients. Also we describe the situation when it is possible to neglect or reduce the time spent on solving auxiliary one-dimensional problems. For some examples, experiments have demonstrated that the method can work effectively on some classes of non-smooth functions. In this case, an example of a simple non-smooth function is constructed, for which, if the subgradient is chosen incorrectly, even if the auxiliary one-dimensional problem is exactly solved, the convergence property of the method may not hold. Experiments have shown that the method under consideration can achieve the desired accuracy of solving the problem in less time than the other methods (gradient descent and ellipsoid method) considered. Partially, it is noted that with an increase in the accuracy of the desired solution, the operating time for the Yu. E. Nesterov’s method can grow slower than the time of the ellipsoid method.
-
Features of numerical solutions of some problems for cnoidal waves as periodic solutions of the Korteweg – de Vries
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 885-901This article discusses the features of the numerical solutions of some problems for cnoidal waves, which are periodic solutions of the classical Korteweg – de Vries equation of the traveling wave type. Exact solutions describing these waves were obtained by communicating the autowave approximation of the Korteweg – de Vries equation to ordinary functions of the third, second, and finally, first orders. Referring to a numerical example shows that in this way ordinary differential equations are not equivalent. The theorem formulated and proved in this article and the remark to it include the set of solutions of the first and second order, which, in their ordinal, are not equivalent. The ordinary differential equation of the first order obtained by the autowave approximation for the description of a cnoidal wave (a periodic solution) and a soliton (a solitary wave). Despite this, from a computational point of view, this equation is the most inconvenient. For this equation, the Lipschitz condition for the sought-for function is not satisfied in the neighborhood of constant solutions. Hence, the existence theorem and the unique solutions of the Cauchy problem for an ordinary differential equation of the first order are not valid. In particular, the uniqueness of the solution to the Cauchy problem is violated at stationary points. Therefore, for an ordinary differential equation of the first order, obtained from the Korteweg – de Vries equation, both in the case of a cnoidal wave and in the case of a soliton, the Cauchy problem cannot be posed at the extremum points. The first condition can be a set position between adjacent extremum points. But for the second, third and third orders, the initial conditions can be set at the growth points and at the extremum points. In this case, the segment for the numerical solution greatly expands and periodicity is observed. For the solutions of these ordinary solutions, the statements of the Cauchy problems are studied, and the results are compared with exact solutions and with each other. A numerical realization of the transformation of a cnoidal wave into a soliton is shown. The results of the article have a hemodynamic interpretation of the pulsating blood flow in a cylindrical blood vessel consisting of elastic rings.
-
Using feedback functions to solve parametric programming problems
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1125-1151We consider a finite-dimensional optimization problem, the formulation of which in addition to the required variables contains parameters. The solution to this problem is a dependence of optimal values of variables on parameters. In general, these dependencies are not functions because they can have ambiguous meanings and in the functional case be nondifferentiable. In addition, their domain of definition may be narrower than the domains of definition of functions in the condition of the original problem. All these properties make it difficult to solve both the original parametric problem and other tasks, the statement of which includes these dependencies. To overcome these difficulties, usually methods such as non-differentiable optimization are used.
This article proposes an alternative approach that makes it possible to obtain solutions to parametric problems in a form devoid of the specified properties. It is shown that such representations can be explored using standard algorithms, based on the Taylor formula. This form is a function smoothly approximating the solution of the original problem for any parameter values, specified in its statement. In this case, the value of the approximation error is controlled by a special parameter. Construction of proposed approximations is performed using special functions that establish feedback (within optimality conditions for the original problem) between variables and Lagrange multipliers. This method is described for linear problems with subsequent generalization to the nonlinear case.
From a computational point of view the construction of the approximation consists in finding the saddle point of the modified Lagrange function of the original problem. Moreover, this modification is performed in a special way using feedback functions. It is shown that the necessary conditions for the existence of such a saddle point are similar to the conditions of the Karush – Kuhn – Tucker theorem, but do not contain constraints such as inequalities and conditions of complementary slackness. Necessary conditions for the existence of a saddle point determine this approximation implicitly. Therefore, to calculate its differential characteristics, the implicit function theorem is used. The same theorem is used to reduce the approximation error to an acceptable level.
Features of the practical implementation feedback function method, including estimates of the rate of convergence to the exact solution are demonstrated for several specific classes of parametric optimization problems. Specifically, tasks searching for the global extremum of functions of many variables and the problem of multiple extremum (maximin-minimax) are considered. Optimization problems that arise when using multicriteria mathematical models are also considered. For each of these classes, there are demo examples.
-
On a model of wind-induced flow of two layered viscous fluid
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 381-390Views (last year): 2.Exact solution of the stationary problem of wind-induced flow of two-layered viscous fluid is found for two-dimensional in vertical plane current and for drift current in three-dimensional case. The condition of sliding is set on the bottom of a water body. The condition of nonpassage is set on the lateral surface. Results of some calculations are given in comparison with those obtained using Ekman’s model (which does not take into account horizontal viscosity of the layer).
-
Adjoint grid parabolic quazilinear boundary-value problems
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 275-291Views (last year): 1.In the paper we construct the adjoint problem for the explicit and implicit parabolic quazi-linear grid boundary-value problems with one spatial variable; the coefficients of the problems depend on the solution at the same time and earlier times. Dependence on the history of the solution is via the state vector; its evolution is described by the differential equation. Many models of diffusion mass transport are reduced to such boundary-value problems. Having solutions to the direct and adjoint problems, one can obtain the exact value of the gradient of a functional in the space of parameters the problem also depends on. We present solving algorithms, including the parallel one.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"