All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Approximate model of an axisymmetric flow of a non-compressible fluid in an infinitely long circular cylinder, the walls of which are composed of elastic rings, based on solutions of the Korteweg – de Vries equation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 375-394An approximate mathematical model of blood flow in an axisymmetric blood vessel is studied. Such a vessel is understood as an infinitely long circular cylinder, the walls of which consist of elastic rings. Blood is considered as an incompressible fluid flowing in this cylinder. Increased pressure causes radially symmetrical stretching of the elastic rings. Following J. Lamb, the rings are located close to each other so that liquid does not flow between them. To mentally realize this, it is enough to assume that the rings are covered with an impenetrable film that does not have elastic properties. Only rings have elasticity. The considered model of blood flow in a blood vessel consists of three equations: the continuity equation, the law of conservation of momentum and the equation of state. An approximate procedure for reducing the equations under consideration to the Korteweg – de Vries (KdV) equation is considered, which was not fully considered by J. Lamb, only to establish the dependence of the coefficients of the KdV equation on the physical parameters of the considered model of incompressible fluid flow in an axisymmetric vessel. From the KdV equation, by a standard transition to traveling waves, ODEs of the third, second and first orders are obtained, respectively. Depending on the different cases of arrangement of the three stationary solutions of the first-order ODE, a cnoidal wave and a soliton are standardly obtained. The main attention is paid to an unbounded periodic solution, which we call a degenerate cnoidal wave. Mathematically, cnoidal waves are described by elliptic integrals with parameters defining amplitudes and periods. Soliton and degenerate cnoidal wave are described by elementary functions. The hemodynamic meaning of these types of decisions is indicated. Due to the fact that the sets of solutions to first-, second- and third-order ODEs do not coincide, it has been established that the Cauchy problem for second- and third-order ODEs can be specified at all points, and for first-order ODEs only at points of growth or decrease. The Cauchy problem for a first-order ODE cannot be specified at extremum points due to the violation of the Lipschitz condition. The degeneration of the cnoidal wave into a degenerate cnoidal wave, which can lead to rupture of the vessel walls, is numerically illustrated. The table below describes two modes of approach of a cnoidal wave to a degenerate cnoidal wave.
-
CFD analysis of hemodynamics in idealized abdominal aorta-renal artery junction: preliminary study to locate atherosclerotic plaque
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 695-706Views (last year): 3.Atherosclerotic diseases such as carotid artery diseases (CAD) and chronic kidney diseases (CKD) are the major causes of death worldwide. The onset of these atherosclerotic diseases in the arteries are governed by complex blood flow dynamics and hemodynamic parameters. Atherosclerosis in renal arteries leads to reduction in arterial efficiency, which ultimately leads to Reno-vascular hypertension. This work attempts to identify the localization of atherosclerotic plaque in human abdominal aorta — renal artery junction using Computational fluid dynamics (CFD).
The atherosclerosis prone regions in an idealized human abdominal aorta-renal artery junction are identified by calculating relevant hemodynamic indicators from computational simulations using the rheologically accurate shear-thinning Yeleswarapu model for human blood. Blood flow is numerically simulated in a 3-D model of the artery junction using ANSYS FLUENT v18.2.
Hemodynamic indicators calculated are average wall shear stress (AWSS), oscillatory shear index (OSI), and relative residence time (RRT). Simulations of pulsatile flow (f=1.25 Hz, Re = 1000) show that low AWSS, and high OSI manifest in the regions of renal artery downstream of the junction and on the infrarenal section of the abdominal aorta lateral to the junction. High RRT, which is a relative index and dependent on AWSS and OSI, is found to overlap with the low AWSS and high OSI at the cranial surface of renal artery proximal to the junction and on the surface of the abdominal aorta lateral to the bifurcation: this indicates that these regions of the junction are prone to atherosclerosis. The results match qualitatively with the findings reported in literature and serve as initial step to illustrate utility of CFD for the location of atherosclerotic plaque.
-
Effects of the heart contractility and its vascular load on the heart rate in athlets
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 323-329Views (last year): 5. Citations: 1 (RSCI).Heart rate (HR) is the most affordable indicator for measuring. In order to control the individual response to physical exercises of different load types heart rate is measured when the athletes perform different types of muscular work (strength machines, various types of training and competitive exercises). The magnitude of heart rate and its dynamics during muscular work and recovery can be objectively judged on the functional status of the cardiovascular system of an athlete, the level of its individual physical performance, as well as an adaptive response to a particular exercise. However, the heart rate is not an independent determinant of the physical condition of an athlete. HR size is formed by the interaction of the basic physiological mechanisms underlying cardiac hemodynamic ejection mode. Heart rate depends on one hand, on contractility of the heart, the venous return, the volumes of the atria and ventricles of the heart and from vascular heart load, the main components of which are elastic and peripheral resistance of the arterial system on the other hand. The values of arterial system vascular resistances depend on the power of muscular work and its duration. HR sensitivity to changes in heart load and vascular contraction was determined in athletes by pair regression analysis simultaneously recorded heart rate data, and peripheral $(R)$ and elastic $(E_a)$ resistance (heart vascular load), and the power $(W)$ of heartbeats (cardiac contractility). The coefficients of sensitivity and pair correlation between heart rate indicators and vascular load and contractility of left ventricle of the heart were determined in athletes at rest and during the muscular work on the cycle ergometer. It is shown that increase in both ergometer power load and heart rate is accompanied by the increase of correlation coefficients and coefficients of the heart rate sensitivity to $R$, $E_a$ and $W$.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"