All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Identification of a mathematical model and research of the various modes of methanogenesis in mesophilic environments
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 131-141Views (last year): 10. Citations: 10 (RSCI).A mathematical model for the production of biogas from animal waste was developed. An algorithm for identification of model parameters was developed. The accuracy of model identification was performed. The result of simulation for batch and continuous modes of supply of substrate was shown. The optimum flow rate of the substrate for continuous operation was found.
-
The development of an intelligent system for recognizing the volume and weight characteristics of cargo
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 437-450Industrial imaging or “machine vision” is currently a key technology in many industries as it can be used to optimize various processes. The purpose of this work is to create a software and hardware complex for measuring the overall and weight characteristics of cargo based on an intelligent system using neural network identification methods that allow one to overcome the technological limitations of similar complexes implemented on ultrasonic and infrared measuring sensors. The complex to be developed will measure cargo without restrictions on the volume and weight characteristics of cargo to be tariffed and sorted within the framework of the warehouse complexes. The system will include an intelligent computer program that determines the volume and weight characteristics of cargo using the machine vision technology and an experimental sample of the stand for measuring the volume and weight of cargo.
We analyzed the solutions to similar problems. We noted that the disadvantages of the studied methods are very high requirements for the location of the camera, as well as the need for manual operations when calculating the dimensions, which cannot be automated without significant modifications. In the course of the work, we investigated various methods of object recognition in images to carry out subject filtering by the presence of cargo and measure its overall dimensions. We obtained satisfactory results when using cameras that combine both an optical method of image capture and infrared sensors. As a result of the work, we developed a computer program allowing one to capture a continuous stream from Intel RealSense video cameras with subsequent extraction of a three-dimensional object from the designated area and to calculate the overall dimensions of the object. At this stage, we analyzed computer vision techniques; developed an algorithm to implement the task of automatic measurement of goods using special cameras and the software allowing one to obtain the overall dimensions of objects in automatic mode.
Upon completion of the work, this development can be used as a ready-made solution for transport companies, logistics centers, warehouses of large industrial and commercial enterprises.
-
Statistical analysis of bigrams of specialized texts
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 243-254The method of the stochastic matrix spectrum analysis is used to build an indicator that allows to determine the subject of scientific texts without keywords usage. This matrix is a matrix of conditional probabilities of bigrams, built on the statistics of the alphabet characters in the text without spaces, numbers and punctuation marks. Scientific texts are classified according to the mutual arrangement of invariant subspaces of the matrix of conditional probabilities of pairs of letter combinations. The separation indicator is the value of the cosine of the angle between the right and left eigenvectors corresponding to the maximum and minimum eigenvalues. The computational algorithm uses a special representation of the dichotomy parameter, which is the integral of the square norm of the resolvent of the stochastic matrix of bigrams along the circumference of a given radius in the complex plane. The tendency of the integral to infinity testifies to the approximation of the integration circuit to the eigenvalue of the matrix. The paper presents the typical distribution of the indicator of identification of specialties. For statistical analysis were analyzed dissertations on the main 19 specialties without taking into account the classification within the specialty, 20 texts for the specialty. It was found that the empirical distributions of the cosine of the angle for the mathematical and Humanities specialties do not have a common domain, so they can be formally divided by the value of this indicator without errors. Although the body of texts was not particularly large, nevertheless, in the case of arbitrary selection of dissertations, the identification error at the level of 2 % seems to be a very good result compared to the methods based on semantic analysis. It was also found that it is possible to make a text pattern for each of the specialties in the form of a reference matrix of bigrams, in the vicinity of which in the norm of summable functions it is possible to accurately identify the theme of the written scientific work, without using keywords. The proposed method can be used as a comparative indicator of greater or lesser severity of the scientific text or as an indicator of compliance of the text to a certain scientific level.
-
Water consumption control model for regions with low water availability
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1395-1410This paper considers the problem of water consumption in the regions of Russia with low water availability. We provide a review of the existing methods to control quality and quantity of water resources at different scales — from households to worldwide. The paper itself considers regions with low “water availability” parameter which is amount of water per person per year. Special attention is paid to the regions, where this parameter is low because of natural features of the region, not because of high population. In such regions many resources are spend on water processing infrastructure to store water and transport water from other regions. In such regions the main water consumers are industry and agriculture.
We propose dynamic two-level hierarchical model which matches water consumption of a region with its gross regional product. On the top level there is a regional administration (supervisor) and on the lower level there are region enterprises (agents). The supervisor sets fees for water consumption. We study the model with Pontryagin’s maximum principle and provide agents’s optimal control in analytical form. For the supervisor’s control we provide numerical algorithm. The model has six free coefficients, which can be chosen so the model represents a particular region. We use data from Russia Federal State Statistics Service for identification process of a model. For numerical analysis we use trust region reflective algorithms. We provide calculations for a few regions with low water availability. It is shown that it is possible to reduce water consumption of a region more than by 20% while gross regional product drop is less than 10%.
-
Parameter identification of viscoelastic cell models based on force curves and wavelet transform
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"