Результаты поиска по 'income function':
Найдено статей: 10
  1. The work is devoted to numerical modeling of two-phase flows, namely, the calculation of supersonic flow around a blunt body by a viscous gas flow with an admixture of large high inertia particles. The system of unsteady Navier – Stokes equations is numerically solved by the meshless method. It uses the cloud of points in space to represent the fields of gas parameters. The spatial derivatives of gas parameters and functions are approximated by the least square method to calculate convective and viscous fluxes in the Navier – Stokes system of equations. The convective fluxes are calculated by the HLLC method. The third-order MUSCL reconstruction scheme is used to achieve high order accuracy. The viscous fluxes are calculated by the second order approximation scheme. The streamlined body surface is represented by a model of an isothermal wall. It implements the conditions for the zero velocity and zero pressure gradient, which is also modeled using the least squares method.

    Every moving body is surrounded by its own cloud of points belongs to body’s domain and moving along with it in space. The explicit three-sage Runge–Kutta method is used to solve numerically the system of gas dynamics equations in the main coordinate system and local coordinate systems of each particle.

    Two methods for the moving objects modeling with reverse impact on the gas flow have been implemented. The first one uses stationary point clouds with fixed neighbors within the same domain. When regions overlap, some nodes of one domain, for example, the boundary nodes of the particle domain, are excluded from the calculation and filled with the values of gas parameters from the nearest nodes of another domain using the least squares approximation of gradients. The internal nodes of the particle domain are used to reconstruct the gas parameters in the overlapped nodes of the main domain. The second method also uses the exclusion of nodes in overlapping areas, but in this case the nodes of another domain take the place of the excluded neighbors to build a single connected cloud of nodes. At the same time, some of the nodes are moving, and some are stationary. Nodes membership to different domains and their relative speed are taken into account when calculating fluxes.

    The results of modeling the motion of a particle in a stationary gas and the flow around a stationary particle by an incoming flow at the same relative velocity show good agreement for both presented methods.

  2. Sokolov A.V., Mamkin V.V., Avilov V.K., Tarasov D.L., Kurbatova Y.A., Olchev A.V.
    Application of a balanced identification method for gap-filling in CO2 flux data in a sphagnum peat bog
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 153-171

    The method of balanced identification was used to describe the response of Net Ecosystem Exchange of CO2 (NEE) to change of environmental factors, and to fill the gaps in continuous CO2 flux measurements in a sphagnum peat bog in the Tver region. The measurements were provided in the peat bog by the eddy covariance method from August to November of 2017. Due to rainy weather conditions and recurrent periods with low atmospheric turbulence the gap proportion in measured CO2 fluxes at our experimental site during the entire period of measurements exceeded 40%. The model developed for the gap filling in long-term experimental data considers the NEE as a difference between Ecosystem Respiration (RE) and Gross Primary Production (GPP), i.e. key processes of ecosystem functioning, and their dependence on incoming solar radiation (Q), soil temperature (T), water vapor pressure deficit (VPD) and ground water level (WL). Applied for this purpose the balanced identification method is based on the search for the optimal ratio between the model simplicity and the data fitting accuracy — the ratio providing the minimum of the modeling error estimated by the cross validation method. The obtained numerical solutions are characterized by minimum necessary nonlinearity (curvature) that provides sufficient interpolation and extrapolation characteristics of the developed models. It is particularly important to fill the missing values in NEE measurements. Reviewing the temporary variability of NEE and key environmental factors allowed to reveal a statistically significant dependence of GPP on Q, T, and VPD, and RE — on T and WL, respectively. At the same time, the inaccuracy of applied method for simulation of the mean daily NEE, was less than 10%, and the error in NEE estimates by the method was higher than by the REddyProc model considering the influence on NEE of fewer number of environmental parameters. Analyzing the gap-filled time series of NEE allowed to derive the diurnal and inter-daily variability of NEE and to obtain cumulative CO2 fluxs in the peat bog for selected summer-autumn period. It was shown, that the rate of CO2 fixation by peat bog vegetation in August was significantly higher than the rate of ecosystem respiration, while since September due to strong decrease of GPP the peat bog was turned into a consistent source of CO2 for the atmosphere.

    Views (last year): 19.
  3. Ketova K.V., Romanovsky Y.M., Rusyak I.G.
    Mathematical modeling of the human capital dynamic
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342

    In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.

    This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.

    The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.

    Views (last year): 34.
  4. When modeling turbulent flows in practical applications, it is often necessary to carry out a series of calculations of bodies of similar topology. For example, bodies that differ in the shape of the fairing. The use of convolutional neural networks allows to reduce the number of calculations in a series, restoring some of them based on calculations already performed. The paper proposes a method that allows to apply a convolutional neural network regardless of the method of constructing a computational mesh. To do this, the flow field is reinterpolated to a uniform mesh along with the body itself. The geometry of the body is set using the signed distance function and masking. The restoration of the flow field based on part of the calculations for similar geometries is carried out using a neural network of the UNet type with a spatial attention mechanism. The resolution of the nearwall region, which is a critical condition for turbulent modeling, is based on the equations obtained in the nearwall domain decomposition method.

    A demonstration of the method is given for the case of a flow around a rounded plate by a turbulent air flow with different rounding at fixed parameters of the incoming flow with the Reynolds number $Re = 10^5$ and the Mach number $M = 0.15$. Since flows with such parameters of the incoming flow can be considered incompressible, only the velocity components are studied directly. The flow fields, velocity and friction profiles obtained by the surrogate model and numerically are compared. The analysis is carried out both on the plate and on the rounding. The simulation results confirm the prospects of the proposed approach. In particular, it was shown that even if the model is used at the maximum permissible limits of its applicability, friction can be obtained with an accuracy of up to 90%. The work also analyzes the constructed architecture of the neural network. The obtained surrogate model is compared with alternative models based on a variational autoencoder or the principal component analysis using radial basis functions. Based on this comparison, the advantages of the proposed method are demonstrated.

  5. Varshavskiy A.E.
    A model for analyzing income inequality based on a finite functional sequence (adequacy and application problems)
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 675-689

    The paper considers the adequacy of the model developed earlier by the author for the analysis of income inequality and based on an empirically confirmed hypothesis that the relative (to the income of the richest group) income values of 20% population groups in total income can be represented as a finite functional sequence, each member of which depends on one parameter — a specially defined indicator of inequality. It is shown that in addition to the existing methods of inequality analysis, the model makes it possible to estimate with the help of analytical expressions the income shares of 20%, 10% and smaller groups of the population for different levels of inequality, as well as to identify how they change with the growth of inequality, to estimate the level of inequality for known ratios between the incomes of different groups of the population, etc.

    The paper provides a more detailed confirmation of the proposed model adequacy in comparison with the previously obtained results of statistical analysis of empirical data on the distribution of income between the 20% and 10% population groups. It is based on the analysis of certain ratios between the values of quintiles and deciles according to the proposed model. The verification of these ratios was carried out using a set of data for a large number of countries and the estimates obtained confirm the sufficiently high accuracy of the model.

    Data are presented that confirm the possibility of using the model to analyze the dependence of income distribution by population groups on the level of inequality, as well as to estimate the inequality indicator for income ratios between different groups, including variants when the income of the richest 20% is equal to the income of the poor 60 %, income of the middle class 40% or income of the rest 80% of the population, as well as when the income of the richest 10% is equal to the income of the poor 40 %, 50% or 60%, to the income of various middle class groups, etc., as well as for cases, when the distribution of income obeys harmonic proportions and when the quintiles and deciles corresponding to the middle class reach a maximum. It is shown that the income shares of the richest middle class groups are relatively stable and have a maximum at certain levels of inequality.

    The results obtained with the help of the model can be used to determine the standards for developing a policy of gradually increasing the level of progressive taxation in order to move to the level of inequality typical of countries with social oriented economy.

  6. Salenek I.A., Seliverstov Y.A., Seliverstov S.A., Sofronova E.A.
    Improving the quality of route generation in SUMO based on data from detectors using reinforcement learning
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 137-146

    This work provides a new approach for constructing high-precision routes based on data from transport detectors inside the SUMO traffic modeling package. Existing tools such as flowrouter and routeSampler have a number of disadvantages, such as the lack of interaction with the network in the process of building routes. Our rlRouter uses multi-agent reinforcement learning (MARL), where the agents are incoming lanes and the environment is the road network. By performing actions to launch vehicles, agents receive a reward for matching data from transport detectors. Parameter Sharing DQN with the LSTM backbone of the Q-function was used as an algorithm for multi-agent reinforcement learning.

    Since the rlRouter is trained inside the SUMO simulation, it can restore routes better by taking into account the interaction of vehicles within the network with each other and with the network infrastructure. We have modeled diverse traffic situations on three different junctions in order to compare the performance of SUMO’s routers with the rlRouter. We used Mean Absoluter Error (MAE) as the measure of the deviation from both cumulative detectors and routes data. The rlRouter achieved the highest compliance with the data from the detectors. We also found that by maximizing the reward for matching detectors, the resulting routes also get closer to the real ones. Despite the fact that the routes recovered using rlRouter are superior to the routes obtained using SUMO tools, they do not fully correspond to the real ones, due to the natural limitations of induction-loop detectors. To achieve more plausible routes, it is necessary to equip junctions with other types of transport counters, for example, camera detectors.

  7. Reshitko M.A., Ougolnitsky G.A., Usov A.B.
    Numerical method for finding Nash and Shtakelberg equilibria in river water quality control models
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 653-667

    In this paper we consider mathematical model to control water quality. We study a system with two-level hierarchy: one environmental organization (supervisor) at the top level and a few industrial enterprises (agents) at the lower level. The main goal of the supervisor is to keep water pollution level below certain value, while enterprises pollute water, as a side effect of the manufacturing process. Supervisor achieves its goal by charging a penalty for enterprises. On the other hand, enterprises choose how much to purify their wastewater to maximize their income.The fee increases the budget of the supervisor. Moreover, effulent fees are charged for the quantity and/or quality of the discharged pollution. Unfortunately, in practice, such charges are ineffective due to the insufficient tax size. The article solves the problem of determining the optimal size of the charge for pollution discharge, which allows maintaining the quality of river water in the rear range.

    We describe system members goals with target functionals, and describe water pollution level and enterprises state as system of ordinary differential equations. We consider the problem from both supervisor and enterprises sides. From agents’ point a normal-form game arises, where we search for Nash equilibrium and for the supervisor, we search for Stackelberg equilibrium. We propose numerical algorithms for finding both Nash and Stackelberg equilibrium. When we construct Nash equilibrium, we solve optimal control problem using Pontryagin’s maximum principle. We construct Hamilton’s function and solve corresponding system of partial differential equations with shooting method and finite difference method. Numerical calculations show that the low penalty for enterprises results in increasing pollution level, when relatively high penalty can result in enterprises bankruptcy. This leads to the problem of choosing optimal penalty, which requires considering problem from the supervisor point. In that case we use the method of qualitatively representative scenarios for supervisor and Pontryagin’s maximum principle for agents to find optimal control for the system. At last, we compute system consistency ratio and test algorithms for different data. The results show that a hierarchical control is required to provide system stability.

  8. Serkov L.A., Krasnykh S.S.
    Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684

    This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.

  9. Molchanov A.G., Olchev A.V.
    Model of CO2 exchange in a sphagnum peat bog
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 369-377

    A simple model was developed to describe the dependence of net CO2 exchange in a sphagnum peat bog as a function of incoming solar radiation, air temperature, and soil moisture. It was parameterized using the field measurement data from two neighboring sites in an undisturbed peat bog (the pine mire with shrub and sphagnum and the shrub-sphagnum mire with rare pine) in Moscow Region. Measurements were conducted during the second part of the growing season, when the groundwater level was below 30 cm. It was shown that is a key parameter influencing the photosynthesis and respiration rates of a sphagnum moss and peat soil. The developed model allows to explain from 71 % to 74 % of the variation of CO2 exchange in the peat bog.

    Views (last year): 1. Citations: 3 (RSCI).
  10. Shatrov A.V., Okhapkin V.P.
    Optimal control of bank investment as a factorof economic stability
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 959-967

    This paper presents a model of replenishment of bank liquidity by additional income of banks. Given the methodological basis for the necessity for bank stabilization funds to cover losses during the economy crisis. An econometric derivation of the equations describing the behavior of the bank financial and operating activity performed. In accordance with the purpose of creating a stabilization fund introduces an optimality criterion used controls. Based on the equations of the behavior of the bank by the method of dynamic programming is derived a vector of optimal controls.

    Views (last year): 5.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"