Результаты поиска по 'injection':
Найдено статей: 14
  1. The mathematical model of the magnetic memory cell MRAM with the in-plane anisotropy axis parallel to the edge of a free ferromagnetic layer (longitudinal anisotropy) has been constructed using approximation of uniform magnetization. The model is based on the Landau–Lifshits–Gilbert equation with the injection-current term in the Sloncžewski–Berger form. The set of ordinary differential equations for magnetization dynamics in a three-layered Co/Cu/Cu valve under the control of external magnetic field and spin-polarized current has been derived in the normal coordinate form. It was shown that the set of equations has two main stationary points on the anisotropy axis at any values of field and current. The stationary analysis of them has been performed. The algebraic equations for determination of additional stationary points have been derived. It has been shown that, depending on the field and current magnitude, the set of equations can have altogether two, four, or six stationary points symmetric in pairs relatively the anisotropy axis. The bifurcation diagrams for all the points have been constructed. The classification of the corresponding phase portraits has been performed. The typical trajectories were calculated numerically using Runge–Kutta method. The regions, where stable and unstable limit cycles exist, have been determined. It was found that the unstable limit cycles exist around the main stable equilibrium point on the axis that coincides with the anisotropy one, whereas the stable cycles surround the unstable additional points of equilibrium. The area of their existence was determined numerically. The new types of dynamics, such as accidental switching and non-complete switching, have been found. The threshold values of switching current and field have been obtained analytically. The estimations of switching times have been performed numerically.

    Views (last year): 2. Citations: 6 (RSCI).
  2. The mathematical model of a three-layered Co/Cu/Co nanopillar for MRAM cell with one fixed and one free layer was investigated in the approximation of uniformly distributed magnetization. The anisotropy axis is perpendicular to the layers (so-called perpendicular anisotropy). Initially the magnetization of the free layer is oriented along the anisotropy axis in the position accepted to be “zero”. Simultaneous magnetic field and spinpolarized current engaging can reorient the magnetization to another position which in this context can be accepted as “one”. The mathematical description of the effect is based on the classical vector Landau–Lifshits equation with the dissipative term in the Gilbert form. In our model we took into account the interactions of the magnetization with an external magnetic field and such effective magnetic fields as an anisotropy and demagnetization ones. The influence of the spin-polarized injection current is taken into account in the form of Sloczewski–Berger term. The model was reduced to the set of three ordinary differential equations with the first integral. It was shown that at any current and field the dynamical system has two main equilibrium states on the axis coincident with anisotropy axis. It was ascertained that in contrast with the longitudinal-anisotropy model, in the model with perpendicular anisotropy there are no other equilibrium states. The stability analysis of the main equilibrium states was performed. The bifurcation diagrams characterizing the magnetization dynamics at different values of the control parameters were built. The classification of the phase portraits on the unit sphere was performed. The features of the dynamics at different values of the parameters were studied and the conditions of the magnetization reorientation were determined. The trajectories of magnetization switching were calculated numerically using the Runge–Kutta method. The parameter values at which limit cycles exist were determined. The threshold values for the switching current were found analytically. The threshold values for the structures with longitudinal and perpendicular anisotropy were compared. It was established that in the structure with the perpendicular anisotropy at zero field the switching current is an order lower than in the structure with the longitudinal one.

    Views (last year): 4. Citations: 1 (RSCI).
  3. When a supersonic air flow interacts with a transverse secondary jet injected into this flow through an orifice on a flat wall, a special flow structure is formed. This flow takes place during fuel injection into combustion chambers of supersonic aircraft engines; therefore, in recent years, various approaches to intensifying gas mixing in this type of flow have been proposed and studied in several countries. The approach proposed in this work implies using spark discharges for pulsed heating of the gas and generating the instabilities in the shear layer at the boundary of the secondary jet. Using simulation in the software package FlowVision 3.13, the characteristics of this flow were obtained in the absence and presence of pulsed-periodic local heat release on the wall on the windward side of the injector opening. A comparison was made of local characteristics at different periodicities of pulsed heating (corresponding to the values of the Strouhal number 0.25 and 0.31). It is shown that pulsed heating can stimulate the formation of perturbations in the shear layer at the jet boundary. For the case of the absence of heating and for two modes of pulsed heating, the values of an integral criterion for mixing efficiency were calculated. It is shown that pulsed heating can lead both to a decrease in the average mixing efficiency and to its increase (up to 9% in the considered heating mode). The calculation method used (unsteady Reynolds-averaged Navier – Stokes equations with a modified $k-\varepsilon$ turbulence model) was validated by considering a typical case of the secondary transverse jet interaction with a supersonic flow, which was studied by several independent research groups and well documented in the literature. The grid convergence was shown for the simulation of this typical case in FlowVision. A quantitative comparison was made of the results obtained from FlowVision calculations with experimental data and calculations in other programs. The results of this study can be useful for specialists dealing with the problems of gas mixing and combustion in a supersonic flow, as well as the development of engines for supersonic aviation.

  4. Dolgov E.V., Kolosov N.S., Firsov A.A.
    The study of the discharge influence on mixing of gaseous fuel jet with the supersonic air flow
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 849-860

    The paper presents the results of numerical simulation of the effect of a long spark discharge on the mixing dynamics of an injected gas jet with supersonic air flow. The calculations were performed using the CFD software package FlowVision. The fuel was supplied using an injector located on the channel wall, and the discharge was organized near the wall downstream of the injector. Simulation of electrical spark discharge was performed using a volumetric heat source. In order to describe the principal specifications of a plasma actuator to accelerate mixing in a supersonic flow (Mach number M = 2), the research involved varying the energy impact to the discharge in the range of 100–500 mJ per pulse, determining the influence of the shape and location of the discharge. A study of the fuel injection modes in a supersonic air flow has been carried out and an optimal gas jet outflow regime has been found to study the effect of a spark discharge. A method has been developed for analyzing the disturbance pattern of the fuel-oxidant interface caused by the operation of a pulsed spark discharge. A program was prepared in the LabView software environment for obtaining quantitative characteristics for further comparison with the results obtained in the experiment.

    The simulation results allow us to conclude that the long spark discharge located along the flow downstream of the injector provides the maximum increase in the interface between the jet of fuel and the main flow. A typical repetition frequency of discharge pulses in a pulse-periodic mode should be more than 6 kHz with a discharge length of ~10 mm to ensure a continuous effect on the mixing at a flow velocity of 500 m/s.

  5. The paper provides the mathematical and numerical models of the interrelated thermo- and hydrodynamic processes in the operational mode of development the unified oil-producing complex during the hydrogel flooding of the non-uniform oil reservoir exploited with a system of arbitrarily located injecting wells and producing wells equipped with submersible multistage electrical centrifugal pumps. A special feature of our approach is the modeling of the special ground-based equipment operation (control stations of submersible pumps, drossel devices on the head of producing wells), designed to regulate the operation modes of both the whole complex and its individual elements.

    The complete differential model includes equations governing non-stationary two-phase five-component filtration in the reservoir, quasi-stationary heat and mass transfer in the wells and working channels of pumps. Special non-linear boundary conditions and dependencies simulate, respectively, the influence of the drossel diameter on the flow rate and pressure at the wellhead of each producing well and the frequency electric current on the performance characteristics of the submersible pump unit. Oil field development is also regulated by the change in bottom-hole pressure of each injection well, concentration of the gel-forming components pumping into the reservoir, their total volume and duration of injection. The problem is solved numerically using conservative difference schemes constructed on the base of the finite difference method, and developed iterative algorithms oriented on the parallel computing technologies. Numerical model is implemented in a software package which can be considered as the «Intellectual System of Wells» for the virtual control the oil field development.

  6. Миньков Л.Л., Дик И.Г.
    Моделирование течения в гидроциклоне с дополнительным инжектором
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 63-76

    Статья представляет собой пример компьютерного моделирования в области инженерной механики. Численным методом находятся поля скорости в гидроциклоне, которые недоступны прямому измерению. Рассматривается численное моделирование трехмерной гидродинамики на основе k-ε RNG модели турбулентности в гидроциклоне со встроенным инжектором, содержащим 5 тангенциально направленных сопла. Показано, что направление движения инжектируемой жидкости зависит от расхода жидкости через инжектор. Расчеты показывают в соответствии с экспериментами, что зависимость сплит-параметра от расхода инжектируемой жидкости имеет немонотонный характер, связанный с отношением мощности основного потока и инжектируемой жидкости.

    Views (last year): 2. Citations: 5 (RSCI).
  7. Koldoba A.V., Skalko Y.I.
    Numerical simulation of inverse mode propagation in-situ combustion direct-flow waves
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 993-1006

    One of the promising technologies for enhanced oil recovery in the development of unconventional oil reservoirs is the thermo-gas method. The method is based on the injection of an oxygen-containing mixture into the formation and its transformation into a highly efficient displacing agent miscible with the formation of oil due to spontaneous in-situ oxidative processes. In some cases, this method has great potential compared to other methods of enhanced oil recovery. This paper discusses some issues of the propagation of in-situ combustion waves. Depending on the parameters of the reservoir and the injected mixture, such waves can propagate in different modes. In this paper, only the direct-flow inverse propagation mode is considered. In this mode, the combustion wave propagates in the direction of the oxidant flow and the reaction front lags behind the heatwave, in which the substance (hydrocarbon fractions, porous skeleton, etc.) is heated to temperatures sufficient for the oxidation reaction to occur. The paper presents the results of an analytical study and numerical simulation of the structure of the inverse wave of in-situ combustion. in two-phase flow in a porous layer. Some simplifying assumptions about the thermal properties of fluid phases was accepted, which allow, on the one hand, to modify the in-situ combustion model observable for analysis, and with another is to convey the main features of this process. The solution of the “running wave” type is considered and the conditions of its implementation are specified. Selected two modes of reaction trailing front regime in-situ combustion waves: hydrodynamic and kinetic. Numerical simulation of the in-situ combustion wave propagation was carried out with using the thermohydrodynamical simulator developed for the numerical integration of non-isothermal multicomponent filtration flows accompanied by phase transitions and chemical reaction.

  8. Maryakhina V.S., Gunkov V.V.
    Fluorescent probe immobilization into enzyme molecules
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 835-843

    The results of the experimental and theoretical researches of kinetics of erythrosine penetration into collagenase molecules have represented in this paper. The case with introduction of the compound (fluorescent probe) which has dimers to enzyme solution as an injection has been considered. It was shown that monomers and dimers can penetrate into enzyme molecules with formation complexes monomer — enzyme, dimer- enzyme. Moreover, transformation of probe fluorescence spectra is at each time moment. Spectrum maximum shift, and its form change. At a time, the immobilized dye dimers greatly impact to formation of end fluorescence spectrum. Well correlation between experimental and theoretical results confirms reality of the obtained data.

    Views (last year): 2. Citations: 3 (RSCI).
  9. Isothermal electroconvection in a dielectric liquid arising in a plane-parallel electrode system due to unipolar injection of charges from the cathode is considered. Spatially periodic rolls structures stability is investigated.

    Views (last year): 1. Citations: 1 (RSCI).
  10. Firsov A.A., Yarantsev D.A., Leonov S.B., Ivanov V.V.
    Numerical simulation of ethylene combustion in supersonic air flow
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 75-86

    In the present paper, we discuss the possibility of a simplified three-dimensional unsteady simulation of plasma-assisted combustion of gaseous fuel in a supersonic airflow. Simulation was performed by using FlowVision CFD software. Analysis of experimental geometry show that it has essentially 3D nature that conditioned by the discrete fuel injection into the flow as well as by the presence of the localized plasma filaments. Study proposes a variant of modeling geometry simplification based on symmetry of the aerodynamic duct and periodicity of the spatial inhomogeneities. Testing of modified FlowVision $k–\varepsilon$ turbulence model named «KEFV» was performed for supersonic flow conditions. Based on that detailed grid without wall functions was used the field of heat and near fuel injection area and surfaces remote from the key area was modeled with using of wall functions, that allowed us to significantly reduce the number of cells of the computational grid. Two steps significantly simplified a complex problem of the hydrocarbon fuel ignition by means of plasma generation. First, plasma formations were simulated by volumetric heat sources and secondly, fuel combustion is reduced to one brutto reaction. Calibration and parametric optimization of the fuel injection into the supersonic flow for IADT-50 JIHT RAS wind tunnel is made by means of simulation using FlowVision CFD software. Study demonstrates a rather good agreement between the experimental schlieren photo of the flow with fuel injection and synthetical one. Modeling of the flow with fuel injection and plasma generation for the facility T131 TSAGI combustion chamber geometry demonstrates a combustion mode for the set of experimental parameters. Study emphasizes the importance of the computational mesh adaptation and spatial resolution increasing for the volumetric heat sources that model electric discharge area. A reasonable qualitative agreement between experimental pressure distribution and modeling one confirms the possibility of limited application of such simplified modeling for the combustion in high-speed flow.

    Views (last year): 8. Citations: 3 (RSCI).
Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"