All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Optimal threshold selection algorithms for multi-label classification: property study
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1221-1238Multi-label classification models arise in various areas of life, which is explained by an increasing amount of information that requires prompt analysis. One of the mathematical methods for solving this problem is a plug-in approach, at the first stage of which, for each class, a certain ranking function is built, ordering all objects in some way, and at the second stage, the optimal thresholds are selected, the objects on one side of which are assigned to the current class, and on the other — to the other. Thresholds are chosen to maximize the target quality measure. The algorithms which properties are investigated in this article are devoted to the second stage of the plug-in approach which is the choice of the optimal threshold vector. This step becomes non-trivial if the $F$-measure of average precision and recall is used as the target quality assessment since it does not allow independent threshold optimization in each class. In problems of extreme multi-label classification, the number of classes can reach hundreds of thousands, so the original optimization problem is reduced to the problem of searching a fixed point of a specially introduced transformation $\boldsymbol V$, defined on a unit square on the plane of average precision $P$ and recall $R$. Using this transformation, two algorithms are proposed for optimization: the $F$-measure linearization method and the method of $\boldsymbol V$ domain analysis. The properties of algorithms are studied when applied to multi-label classification data sets of various sizes and origin, in particular, the dependence of the error on the number of classes, on the $F$-measure parameter, and on the internal parameters of methods under study. The peculiarity of both algorithms work when used for problems with the domain of $\boldsymbol V$, containing large linear boundaries, was found. In case when the optimal point is located in the vicinity of these boundaries, the errors of both methods do not decrease with an increase in the number of classes. In this case, the linearization method quite accurately determines the argument of the optimal point, while the method of $\boldsymbol V$ domain analysis — the polar radius.
-
Automated citation graph building from a corpora of scientific documents
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 707-719Views (last year): 5. Citations: 1 (RSCI).In this paper the problem of automated building of a citation graph from a collection of scientific documents is considered as a sequence of machine learning tasks. The overall data processing technology is described which consists of six stages: preprocessing, metainformation extraction, bibliography lists extraction, splitting bibliography lists into separate bibliography records, standardization of each bibliography record, and record linkage. The goal of this paper is to provide a survey of approaches and algorithms suitable for each stage, motivate the choice of the best combination of algorithms, and adapt some of them for multilingual bibliographies processing. For some of the tasks new algorithms and heuristics are proposed and evaluated on the mixed English and Russian documents corpora.
-
Convolutional neural networks of YOLO family for mobile computer vision systems
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 615-631The work analyzes known classes of convolutional neural network models and studies selected from them promising models for detecting flying objects in images. Object detection here refers to the detection, localization in space and classification of flying objects. The work conducts a comprehensive study of selected promising convolutional neural network models in order to identify the most effective ones from them for creating mobile real-time computer vision systems. It is shown that the most suitable models for detecting flying objects in images, taking into account the formulated requirements for mobile real-time computer vision systems, are models of the YOLO family, and five models from this family should be considered: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 and YOLOv7-Tiny. An appropriate dataset has been developed for training, validation and comprehensive research of these models. Each labeled image of the dataset includes from one to several flying objects of four classes: “bird”, “aircraft-type unmanned aerial vehicle”, “helicopter-type unmanned aerial vehicle”, and “unknown object” (objects in airspace not included in the first three classes). Research has shown that all convolutional neural network models exceed the specified threshold value by the speed of detecting objects in the image, however, only the YOLOv4-CSP and YOLOv7 models partially satisfy the requirements of the accuracy of detection of flying objects. It was shown that most difficult object class to detect is the “bird” class. At the same time, it was revealed that the most effective model is YOLOv7, the YOLOv4-CSP model is in second place. Both models are recommended for use as part of a mobile real-time computer vision system with condition of additional training of these models on increased number of images with objects of the “bird” class so that they satisfy the requirement for the accuracy of detecting flying objects of each four classes.
-
Algorithm of simple graph exploration by a collective of agents
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 33-45The study presented in the paper is devoted to the problem of finite graph exploration using a collective of agents. Finite non-oriented graphs without loops and multiple edges are considered in this paper. The collective of agents consists of two agents-researchers, who have a finite memory independent of the number of nodes of the graph studied by them and use two colors each (three colors are used in the aggregate) and one agentexperimental, who has a finite, unlimitedly growing internal memory. Agents-researches can simultaneously traverse the graph, read and change labels of graph elements, and also transmit the necessary information to a third agent — the agent-experimenter. An agent-experimenter is a non-moving agent in whose memory the result of the functioning of agents-researchers at each step is recorded and, also, a representation of the investigated graph (initially unknown to agents) is gradually built up with a list of edges and a list of nodes.
The work includes detail describes of the operating modes of agents-researchers with an indication of the priority of their activation. The commands exchanged between agents-researchers and an agent-experimenter during the execution of procedures are considered. Problematic situations arising in the work of agentsresearchers are also studied in detail, for example, staining a white vertex, when two agents simultaneously fall into the same node, or marking and examining the isthmus (edges connecting subgraphs examined by different agents-researchers), etc. The full algorithm of the agent-experimenter is presented with a detailed description of the processing of messages received from agents-researchers, on the basis of which a representation of the studied graph is built. In addition, a complete analysis of the time, space, and communication complexities of the constructed algorithm was performed.
The presented graph exploration algorithm has a quadratic (with respect to the number of nodes of the studied graph) time complexity, quadratic space complexity, and quadratic communication complexity. The graph exploration algorithm is based on the depth-first traversal method.
-
Mathematical modeling the kinetics and calculation of dosimetric characteristics of osteotropic radiopharmaceutical drugs
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 647-660In Russian medicine two radiopharmaceuticals are currently used for radionuclide therapy of bone metastases: 89Sr-chloride and 153Sm-oxabifor. The first one has many side effects, so its use is limited. The second one is available only in clinics, its transportation to which does not take much time. Currently, the third radiopharmaceutical 188Re-solerene is undergoing clinical trials. Due to the generator method of obtaining 188Re, this radiopharmaceutical should become available for use in many regions of our country. Therefore, there is a need for a comparative analysis of the characteristics of these radiopharmaceuticals, including on the basis of mathematical modeling.
The article discusses the features of mathematical modeling the kinetics of osteotropic radiopharmaceutical drugs in the human body with bone metastases. Based on the four-compartment model, a complex of modeling and calculation of pharmacokinetic and dosimetric characteristics of radiopharmaceuticals for radionuclide therapy of bone metastases was developed and tested. Using clinical data, the transport constants of the model were identified and the individual characteristics of Russian radiopharmaceuticals labeled 89Sr, 153Sm and 188Re were calculated (effective half-lives, maximum activity in the compartments and the times of their achievement, absorbed doses to bone tissue and metastases, endosteal bone layer, red bone marrow, blood, kidneys and bladder). The time activity dependencies for all compartments of the model are obtained and analyzed. A comparative analysis of the pharmacokinetics and dosimetry of three radiopharmaceuticals (89Sr-chloride, 153Sm-oxabiphore, 188Re-solerene) was carried out.
From a comparative analysis of the pharmacokinetic and dosimetric characteristics of these radiopharmaceutical drugs, it follows that the best of them for widespread use in many regions of our country should be 188Re-solerene, taking into account the generator method of obtaining 188Re in a hospital.
-
Bibliographic link prediction using contrast resampling technique
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1317-1336The paper studies the problem of searching for fragments with missing bibliographic links in a scientific article using automatic binary classification. To train the model, we propose a new contrast resampling technique, the innovation of which is the consideration of the context of the link, taking into account the boundaries of the fragment, which mostly affects the probability of presence of a bibliographic links in it. The training set was formed of automatically labeled samples that are fragments of three sentences with class labels «without link» and «with link» that satisfy the requirement of contrast: samples of different classes are distanced in the source text. The feature space was built automatically based on the term occurrence statistics and was expanded by constructing additional features — entities (names, numbers, quotes and abbreviations) recognized in the text.
A series of experiments was carried out on the archives of the scientific journals «Law enforcement review» (273 articles) and «Journal Infectology» (684 articles). The classification was carried out by the models Nearest Neighbors, RBF SVM, Random Forest, Multilayer Perceptron, with the selection of optimal hyperparameters for each classifier.
Experiments have confirmed the hypothesis put forward. The highest accuracy was reached by the neural network classifier (95%), which is however not as fast as the linear one that showed also high accuracy with contrast resampling (91–94%). These values are superior to those reported for NER and Sentiment Analysis on comparable data. The high computational efficiency of the proposed method makes it possible to integrate it into applied systems and to process documents online.
-
Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"