All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Modeling of the supply–demand imbalance in engineering labor market
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1249-1273Nowadays the situation of supply-demand imbalances in the professionals’ labor markets causes human capital losses as far as hampers scientific and innovation development. In Russia, supply-demand imbalances in the engineering labor market are associated with deindustrialization processes and manufacturing decline, resulted in a negative public perception of the engineering profession and high rates of graduates not working within the specialty or changing their occupation.
For analysis of the supply-demand imbalances in the engineering labor market, we elaborated a macroeconomic model. The model consists of 14 blocks, including blocks for demand and supply for engineers and technicians, along with the blocks for macroeconomic indicators as industry and service sector output, capital investment. Using this model, we forecasted the perspective supply-demand imbalances in the engineering labor market in a short-term period and examined the parameters of getting supply-demand balance in the medium-term perspective.
The results obtained show that situation of more balanced supply and demand for engineering labor is possible if there is simultaneous increase in the share of investments in fixed assets of manufacturing and relative wages in industry, besides getting to balance is facilitated by a decrease of the share of graduates not working by specialty. It is worth noting that a decrease in the share of graduates not working by specialty may be affected whether by the growth of relative wages in industry and number of vacancies or by the implementation of measures aimed at improving the working conditions of the engineering workforce and increasing the attractiveness of the profession. To summarize, in the case of the simplest scenario, not considering additional measures of working conditions improvement and increasing the attractiveness of the profession, the conditions of supply-demand balance achievement implies slightly lower growth rates of investment in industry than required in scenarios that involve increasing the share of engineers and technicians working in their specialty after graduation. The latter case, where a gradual decrease in the proportion of those who do not work in engineering specialty is expected, requires, probably, higher investment costs for attracting specialists and creating new jobs, as well as additional measures to strengthen the attractiveness of the engineering profession.
-
Hypergeometric functions in model of General equilibrium of multisector economy with monopolistic competition
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 825-836Views (last year): 10.We show that basic properties of some models of monopolistic competition are described using families of hypergeometric functions. The results obtained by building a general equilibrium model in a multisector economy producing a differentiated good in $n$ high-tech sectors in which single-product firms compete monopolistically using the same technology. Homogeneous (traditional) sector is characterized by perfect competition. Workers are motivated to find a job in high-tech sectors as wages are higher there. However, they are at risk to remain unemployed. Unemployment persists in equilibrium by labor market imperfections. Wages are set by firms in high-tech sectors as a result of negotiations with employees. It is assumed that individuals are homogeneous consumers with identical preferences that are given the separable utility function of general form. In the paper the conditions are found such that the general equilibrium in the model exists and is unique. The conditions are formulated in terms of the elasticity of substitution $\mathfrak{S}$ between varieties of the differentiated good which is averaged over all consumers. The equilibrium found is symmetrical with respect to the varieties of differentiated good. The equilibrium variables can be represented as implicit functions which properties are associated elasticity $\mathfrak{S}$ introduced by the authors. A complete analytical description of the equilibrium variables is possible for known special cases of the utility function of consumers, for example, in the case of degree functions, which are incorrect to describe the response of the economy to changes in the size of the markets. To simplify the implicit function, we introduce a utility function defined by two one-parameter families of hypergeometric functions. One of the families describes the pro-competitive, and the other — anti-competitive response of prices to an increase in the size of the economy. A parameter change of each of the families corresponds to all possible values of the elasticity $\mathfrak{S}$. In this sense, the hypergeometric function exhaust natural utility function. It is established that with the increase in the elasticity of substitution between the varieties of the differentiated good the difference between the high-tech and homogeneous sectors is erased. It is shown that in the case of large size of the economy in equilibrium individuals consume a small amount of each product as in the case of degree preferences. This fact allows to approximate the hypergeometric functions by the sum of degree functions in a neighborhood of the equilibrium values of the argument. Thus, the change of degree utility functions by hypergeometric ones approximated by the sum of two power functions, on the one hand, retains all the ability to configure parameters and, on the other hand, allows to describe the effects of change the size of the sectors of the economy.
-
Modeling of population dynamics employed in the economic sectors: agent-oriented approach
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 919-937Views (last year): 34.The article deals with the modeling of the number of employed population by branches of the economy at the national and regional levels. The lack of targeted distribution of workers in a market economy requires the study of systemic processes in the labor market that lead to different dynamics of the number of employed in the sectors of the economy. In this case, personal strategies for choosing labor activity by economic agents become important. The presence of different strategies leads to the emergence of strata in the labor market with a dynamically changing number of employees, unevenly distributed among the sectors of the economy. As a result, non-linear fluctuations in the number of employed population can be observed, the toolkit of agentbased modeling is relevant for the study of the fluctuations. In the article, we examined in-phase and anti-phase fluctuations in the number of employees by economic activity on the example of the Jewish Autonomous Region in Russia. The fluctuations found in the time series of statistical data for 2008–2016. We show that such fluctuations appear by age groups of workers. In view of this, we put forward a hypothesis that the agent in the labor market chooses a place of work by a strategy, related with his age group. It directly affects the distribution of the number of employed for different cohorts and the total number of employed in the sectors of the economy. The agent determines the strategy taking into account the socio-economic characteristics of the branches of the economy (different levels of wages, working conditions, prestige of the profession). We construct a basic agentoriented model of a three-branch economy to test the hypothesis. The model takes into account various strategies of economic agents, including the choice of the highest wages, the highest prestige of the profession and the best working conditions by the agent. As a result of numerical experiments, we show that the availability of various industry selection strategies and the age preferences of employers within the industry lead to periodic and complex dynamics of the number of different-aged employees. Age preferences may be a consequence, for example, the requirements of employer for the existence of work experience and education. Also, significant changes in the age structure of the employed population may result from migration.
-
Modelling interregional migration flows by the cellular automata
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1467-1483The article dwells upon investigating the issue of the most adequate tools developing and justifying to forecast the interregional migration flows value and structure. Migration processes have a significant impact on the size and demographic structure of the population of territories, the state and balance of regional and local labor markets.
To analyze the migration processes and to assess their impact an economic-mathematical tool is required which would be instrumental in modelling the migration processes and flows for different areas with the desired precision. The current methods and approaches to the migration processes modelling, including the analysis of their advantages and disadvantages, were considered. It is noted that to implement many of these methods mass aggregated statistical data is required which is not always available and doesn’t characterize the migrants behavior at the local level where the decision to move to a new dwelling place is made. This has a significant impact on the ability to apply appropriate migration processes modelling techniques and on the projection accuracy of the migration flows magnitude and structure.
The cellular automata model for interregional migration flows modelling, implementing the integration of the households migration behavior model under the conditions of the Bounded Rationality into the general model of the area migration flow was developed and tested based on the Primorye Territory data. To implement the households migration behavior model under the conditions of the Bounded Rationality the integral attractiveness index of the regions with economic, social and ecological components was proposed in the work.
To evaluate the prognostic capacity of the developed model, it was compared with the available cellular automata models used to predict interregional migration flows. The out of sample prediction method which showed statistically significant superiority of the proposed model was applied for this purpose. The model allows obtaining the forecasts and quantitative characteristics of the areas migration flows based on the households real migration behaviour at the local level taking into consideration their living conditions and behavioural motives.
-
Models of production functions for the Russian economy
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 293-312Views (last year): 21. Citations: 65 (RSCI).A comparative analysis of the applicability of several variants of the production function models for the analysis of modern Russian economy is presented in a paper. Through regression analysis, the effect of such factors as the oil prices on the world market, the innovation, the hypothesis of constant returns to factors of production is estimated. Calculations were made both for the economy as a whole and for separate industries. It is shown that the models of the economy of Russia as a whole and some of its industries in relation to real data have significant increasing returns to labor. Limits of applicability for the models are discussed.
-
Forecasting the labor force dynamics in a multisectoral labor market
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 235-250The article considers the problem of forecasting the number of employed and unemployed persons in a multisectoral labor market using a balance mathematical model of labor force intersectoral dynamics.
The balance mathematical model makes it possible to calculate the values of intersectoral dynamics indicators using only statistical data on sectoral employment and unemployment provided by the Federal State Statistics Service. Intersectoral dynamics indicators of labor force calculated for several years in a row are used to build trends for each of these indicators. The found trends are used to calculation of forecasted intersectoral dynamics indicators of labor force. The sectoral employment and unemployment of researched multisectoral labor market is forecasted based on values these forecasted indicators.
The proposed approach was applied to forecast the employed persons in the economic sectors of the Russian Federation in 2011–2016. The following types of trends were used to describe changes of intersectoral dynamics indicators values: linear, non-linear, constant. The procedure for selecting trends is clearly demonstrated by the example of indicators that determine the labor force movements from the “Transport and communications” sector to the “Healthcare and social services” sector, as well as from the “Public administration and military security, social security” sector to the “Education” sector.
Several approaches to forecasting was compared: a) naive forecast, within which the labor market indicators was forecasted only using a constant trend; b) forecasting based on a balance model using only a constant trend for all intersectoral dynamics indicators of labor force; c) forecasting directly by the number employed persons in economic sectors using the types of trends considered in the article; d) forecasting based on a balance model with the trends choice for each intersectoral dynamics indicators of labor force.
The article shows that the use of a balance model provides a better forecast quality compared to forecasting directly by the number of employed persons. The use of trends in intersectoral dynamics indicators improves the quality of the forecast. The article also provides analysis examples of the multisectoral labor market in the Russian Federation. Using the balance model, the following information was obtained: the labor force flows distribution outgoing from concrete sectors by sectors of the economy; the sectoral structure of the labor force flows ingoing in concrete sectors. This information is not directly contained in the data provided by the Federal State Statistics Service.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"