All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.
-
A study on the dynamics of pest population with biocontrol using predator, parasite in presence of awareness
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 713-729The coconut tree is often mentioned as the “tree of life” due to its immense benefits to the human community ranging from edible products to building materials. Rugose spiraling whitefly (RSW), a natural enemy seems to be a major threat to farmers in bringing up these coconut trees. A mathematical model to study the dynamics of pest population in the presence of predator and parasite is developed. The biologically feasible equilibrium points are derived. Local asymptotic stability as well as global asymptotic stability is analyzed at the points. Furthermore, in order to educate farmers on pest control, we have added the impact of awareness programs in the model. The conditions of existence and stability properties of all feasible steady states of this model are analyzed. The result reveals that predator and parasite play a major role in reducing the immature pest. It also shows that pest control activities through awareness programs further reduce the mature pest population which decreases the egg laying rate which in turn reduces the immature population.
-
The analysis of respiratory reactions of the person in the conditions of the changed gas environment on mathematical model
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 281-296Views (last year): 5.The aim of the work was to study and develop methods of forecasting the dynamics of the human respiratory reactions, based on mathematical modeling. To achieve this goal have been set and solved the following tasks: developed and justified the overall structure and formalized description of the model Respiro-reflex system; built and implemented the algorithm in software models of gas exchange of the body; computational experiments and checking the adequacy of the model-based Lite-ture data and our own experimental studies.
In this embodiment, a new comprehensive model entered partial model modified version of physicochemical properties and blood acid-base balance. In developing the model as the basis of a formalized description was based on the concept of separation of physiologically-fi system of regulation on active and passive subsystems regulation. Development of the model was carried out in stages. Integrated model of gas exchange consisted of the following special models: basic biophysical models of gas exchange system; model physicochemical properties and blood acid-base balance; passive mechanisms of gas exchange model developed on the basis of mass balance equations Grodinza F.; chemical regulation model developed on the basis of a multifactor model D. Gray.
For a software implementation of the model, calculations were made in MatLab programming environment. To solve the equations of the method of Runge–Kutta–Fehlberga. It is assumed that the model will be presented in the form of a computer research program, which allows implements vat various hypotheses about the mechanism of the observed processes. Calculate the expected value of the basic indicators of gas exchange under giperkap Britain and hypoxia. The results of calculations as the nature of, and quantity is good enough co-agree with the data obtained in the studies on the testers. The audit on Adek-vatnost confirmed that the error calculation is within error of copper-to-biological experiments. The model can be used in the theoretical prediction of the dynamics of the respiratory reactions of the human body in a changed atmosphere.
-
Regimes with exacerbation in the history of mankind or memories of the future
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.
-
On the boundaries of optimally designed elastoplastic structures
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 503-515Views (last year): 8.This paper studies minimum volume elastoplastic bodies. One part of the boundary of every reviewed body is fixed to the same space points while stresses are set for the remaining part of the boundary surface (loaded surface). The shape of the loaded surface can change in space but the limit load factor calculated based on the assumption that the bodies are filled with elastoplastic medium must not be less than a fixed value. Besides, all varying bodies are supposed to have some type of a limited volume sample manifold inside of them.
The following problem has been set: what is the maximum number of cavities (or holes in a two-dimensional case) that a minimum volume body (plate) can have under the above limitations? It is established that in order to define a mathematically correct problem, two extra conditions have to be met: the areas of the holes must be bigger than the small constant while the total length of the internal hole contour lines within the optimum figure must be minimum among the varying bodies. Thus, unlike most articles on optimum design of elastoplastic structures where parametric analysis of acceptable solutions is done with the set topology, this paper looks for the topological parameter of the design connectivity.
The paper covers the case when the load limit factor for the sample manifold is quite large while the areas of acceptable holes in the varying plates are bigger than the small constant. The arguments are brought forward that prove the Maxwell and Michell beam system to be the optimum figure under these conditions. As an example, microphotographs of the standard biological bone tissues are presented. It is demonstrated that internal holes with large areas cannot be a part of the Michell system. At the same the Maxwell beam system can include holes with significant areas. The sufficient conditions are given for the hole formation within the solid plate of optimum volume. The results permit generalization for three-dimensional elastoplastic structures.
The paper concludes with the setting of mathematical problems arising from the new problem optimally designed elastoplastic systems.
-
Regarding the dynamics of cosymmetric predator – prey systems
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 799-813Views (last year): 12. Citations: 3 (RSCI).To study nonlinear effects of biological species interactions numerical-analytical approach is being developed. The approach is based on the cosymmetry theory accounting for the phenomenon of the emergence of a continuous family of solutions to differential equations where each solution can be obtained from the appropriate initial state. In problems of mathematical ecology the onset of cosymmetry is usually connected with a number of relationships between the parameters of the system. When the relationships collapse families vanish, we get a finite number of isolated solutions instead of a continuum of solutions and transient process can be long-term, dynamics taking place in a neighborhood of a family that has vanished due to cosymmetry collapse.
We consider a model for spatiotemporal competition of predators or prey with an account for directed migration, Holling type II functional response and nonlinear prey growth function permitting Alley effect. We found out the conditions on system parameters under which there is linear with respect to population densities cosymmetry. It is demonstated that cosymmetry exists for any resource function in case of heterogeneous habitat. Numerical experiment in MATLAB is applied to compute steady states and oscillatory regimes in case of spatial heterogeneity.
The dynamics of three population interactions (two predators and a prey, two prey and a predator) are considered. The onset of families of stationary distributions and limit cycle branching out of equlibria of a family that lose stability are investigated in case of homogeneous habitat. The study of the system for two prey and a predator gave a wonderful result of species coexistence. We have found out parameter regions where three families of stable solutions can be realized: coexistence of two prey in absence of a predator, stationary and oscillatory distributions of three coexisting species. Cosymmetry collapse is analyzed and long-term transient dynamics leading to solutions with the exclusion of one of prey or extinction of a predator is established in the numerical experiment.
-
Mathematicity of physics is surprising, but it enables us to understand the laws of nature through the analysis of mathematical structures describing it. This concerns, however, only physics. The degree of the mathematization of biology is low, and attempts to mathematize it are limited to the application of mathematical methods used for the description of physical systems. When doing so, we are likely to commit an error of attributing to biological systems features that they do not have. Some argue that biology does need new mathematical methods conforming to its needs, and not known from physics. However, because of a specific complexity of biological systems, we should speak of their algorithmicity, rather than of their mathematicity. As an example of algorithmic approach one can indicate so called individual-based models used in ecology to describe population dynamics or fractal models applied to describe geometrical complexity of such biological structures as trees.
-
Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 975-995Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.
-
Protection of biological resources in the coastal area: the mathematical model
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1109-1125Views (last year): 1. Citations: 1 (RSCI).Protection of aquatic biological resources in the coastal area has significant features (a large number of small fishing vessels, the dynamism of the situation, the use of coastal protection), by virtue of which stands in a class of applications. A mathematical model of protection designed for the determination of detection equipment and means of violators of the situation in order to ensure the function of deterrence of illegal activities. Resolves a tactical game-theoretic problem - find the optimal line patrol (parking) means of implementation (guard boats) and optimal removal of seats from the shore fishing violators. Using the methods of the theory of experimental design, linear regression models to assess the contribution of the main factors affecting the results of the simulation.
In order to enhance the sustainability and adequacy of the model is proposed to use the mechanism of rankings means of protection, based on the borders and the rank and Pareto allows to take into account the principles of protection and further means of protection. To account for the variability of the situation offered several scenarios in which it is advisable to perform calculations.
-
Biomathematical system of the nucleic acids description
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 417-434The article is devoted to the application of various methods of mathematical analysis, search for patterns and studying the composition of nucleotides in DNA sequences at the genomic level. New methods of mathematical biology that made it possible to detect and visualize the hidden ordering of genetic nucleotide sequences located in the chromosomes of cells of living organisms described. The research was based on the work on algebraic biology of the doctor of physical and mathematical sciences S. V. Petukhov, who first introduced and justified new algebras and hypercomplex numerical systems describing genetic phenomena. This paper describes a new phase in the development of matrix methods in genetics for studying the properties of nucleotide sequences (and their physicochemical parameters), built on the principles of finite geometry. The aim of the study is to demonstrate the capabilities of new algorithms and discuss the discovered properties of genetic DNA and RNA molecules. The study includes three stages: parameterization, scaling, and visualization. Parametrization is the determination of the parameters taken into account, which are based on the structural and physicochemical properties of nucleotides as elementary components of the genome. Scaling plays the role of “focusing” and allows you to explore genetic structures at various scales. Visualization includes the selection of the axes of the coordinate system and the method of visual display. The algorithms presented in this work are put forward as a new toolkit for the development of research software for the analysis of long nucleotide sequences with the ability to display genomes in parametric spaces of various dimensions. One of the significant results of the study is that new criteria were obtained for the classification of the genomes of various living organisms to identify interspecific relationships. The new concept allows visually and numerically assessing the variability of the physicochemical parameters of nucleotide sequences. This concept also allows one to substantiate the relationship between the parameters of DNA and RNA molecules with fractal geometric mosaics, reveals the ordering and symmetry of polynucleotides, as well as their noise immunity. The results obtained justified the introduction of new terms: “genometry” as a methodology of computational strategies and “genometrica” as specific parameters of a particular genome or nucleotide sequence. In connection with the results obtained, biosemiotics and hierarchical levels of organization of living matter are raised.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"