All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Incomplete systems of linear equations with restrictions of variable values
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 719-745Views (last year): 24. Citations: 3 (RSCI).The problem is formulated for description of objects having various natures which uses a system of linear equations with variable number exceeding the number of the equations. An important feature of this problem that substantially complicates its solving is the existing of restrictions imposed on a number of the variables. In particular, the choice of biochemical reaction aggregate that converts a preset substrate (a feedstock) into a preset product belongs to this kind of problems. In this case, unknown variables are the rates of biochemical reactions which form a vector to be determined. Components of this vector are subdivided into two groups: 1) the defined components, $\vec{y}$; 2) those dependent on the defined ones, $\vec{x}$. Possible configurations of the domain of $\vec{y}$ values permitted by restrictions imposed upon $\vec{x}$ components have been studied. It has been found that a part of restrictions may be superfluous and, therefore, unnecessary for the problem solving. Situations are analyzed when two or more $\vec{x}$ restrictions result in strict interconnections between $\vec{y}$ components. Methods of search of the basis solutions which take into account the peculiarities of this problem are described. Statement of the general problem and properties of its solutions are illustrated using a biochemical example.
-
Stoichiometric synthesis of metabolic pathways
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1241-1267Views (last year): 6. Citations: 3 (RSCI).A vector-matrix approach to the theoretical design of metabolic pathways converting chemical compounds, viz., preset substrates, into desirable products is described. It is a mathematical basis for computer–aided generation of alternative biochemical reaction sets executing the given substrate–product conversion. The pathways are retrieved from the used database of biochemical reactions and utilize the reaction stoichiometry and restrictions based on the irreversibility of a part of them. Particular attention is paid to the analysis of restriction interrelations. It is shown that the number of restrictions can be notably reduced due to the existence of families of parallel restricting planes in the space of reaction flows. Coinciding planes of contradirectional restrictions result in the existence of fixed reaction flow values. The problem of exclusion of so called futile cycles is also considered. Utilization of these factors allows essential lowering of the problem complexity and necessary computational resources. An example of alternative biochemical pathway computation for conversion of glucose and glycerol into succinic acid is given. It is found that for a preset “substrate–product” pair many pathways have the same high-energy bond balance.
-
The stoichiometry of metabolic pathways in the dynamics of cellular populations
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 455-475Views (last year): 5. Citations: 1 (RSCI).The problem has been considered, to what extent the kinetic models of cellular metabolism fit the matter which they describe. Foundations of stoichiometry of the whole metabolism and its large regions have been stated. A bioenergetic representation of stoichiometry based on a universal unit of chemical compound reductivity, viz., redoxon, has been described. Equations of mass-energy balance (bioenergetic variant of stoichiometry) have been derived for metabolic flows including those of protons possessing high electrochemical potential μH+, and high-energy compounds. Interrelations have been obtained which determine the biomass yield, rate of uptake of energy source for cell growth and other important physiological quantities as functions of biochemical characteristics of cellular energetics. The maximum biomass energy yield values have been calculated for different energy sources utilized by cells. These values coincide with those measured experimentally.
-
Estimation of maximal values of biomass growth yield based on the mass-energy balance of cell metabolism
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 723-750Views (last year): 2.The biomass growth yield is the ratio of the newly synthesized substance of growing cells to the amount of the consumed substrate, the source of matter and energy for cell growth. The yield is a characteristic of the efficiency of substrate conversion to cell biomass. The conversion is carried out by the cell metabolism, which is a complete aggregate of biochemical reactions occurring in the cells.
This work newly considers the problem of maximal cell growth yield prediction basing on balances of the whole living cell metabolism and its fragments called as partial metabolisms (PM). The following PM’s are used for the present consideration. During growth on any substrate we consider i) the standard constructive metabolism (SCM) which consists of identical pathways during growth of various organisms on any substrate. SCM starts from several standard compounds (nodal metabolites): glucose, acetyl-CoA 2-oxoglutarate, erythrose-4-phosphate, oxaloacetate, ribose-5- phosphate, 3-phosphoglycerate, phosphoenolpyruvate, and pyruvate, and ii) the full forward metabolism (FM) — the remaining part of the whole metabolism. The first one consumes high-energy bonds (HEB) formed by the second one. In this work we examine a generalized variant of the FM, when the possible presence of extracellular products, as well as the possibilities of both aerobic and anaerobic growth are taken into account. Instead of separate balances of each nodal metabolite formation as it was made in our previous work, this work deals at once with the whole aggregate of these metabolites. This makes the problem solution more compact and requiring a smaller number of biochemical quantities and substantially less computational time. An equation expressing the maximal biomass yield via specific amounts of HEB formed and consumed by the partial metabolisms has been derived. It includes the specific HEB consumption by SCM which is a universal biochemical parameter applicable to the wide range of organisms and growth substrates. To correctly determine this parameter, the full constructive metabolism and its forward part are considered for the growth of cells on glucose as the mostly studied substrate. We used here the found earlier properties of the elemental composition of lipid and lipid-free fractions of cell biomass. Numerical study of the effect of various interrelations between flows via different nodal metabolites has been made. It showed that the requirements of the SCM in high-energy bonds and NAD(P)H are practically constants. The found HEB-to-formed-biomass coefficient is an efficient tool for finding estimates of maximal biomass yield from substrates for which the primary metabolism is known. Calculation of ATP-to-substrate ratio necessary for the yield estimation has been made using the special computer program package, GenMetPath.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"