All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Controlling the movement of the body using internal masses in a viscous liquid
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 445-460Views (last year): 21. Citations: 2 (RSCI).This article is devoted to the study of self-propulsion of bodies in a fluid by the action of internal mechanisms, without changing the external shape of the body. The paper presents an overview of theoretical papers that justify the possibility of this displacement in ideal and viscous liquids.
A special case of self-propulsion of a rigid body along the surface of a liquid is considered due to the motion of two internal masses along the circles. The paper presents a mathematical model of the motion of a solid body with moving internal masses in a three-dimensional formulation. This model takes into account the three-dimensional vibrations of the body during motion, which arise under the action of external forces-gravity force, Archimedes force and forces acting on the body, from the side of a viscous fluid.
The body is a homogeneous elliptical cylinder with a keel located along the larger diagonal. Inside the cylinder there are two material point masses moving along the circles. The centers of the circles lie on the smallest diagonal of the ellipse at an equal distance from the center of mass.
Equations of motion of the system (a body with two material points, placed in a fluid) are represented as Kirchhoff equations with the addition of external forces and moments acting on the body. The phenomenological model of viscous friction is quadratic in velocity used to describe the forces of resistance to motion in a fluid. The coefficients of resistance to movement were determined experimentally. The forces acting on the keel were determined by numerical modeling of the keel oscillations in a viscous liquid using the Navier – Stokes equations.
In this paper, an experimental verification of the proposed mathematical model was carried out. Several series of experiments on self-propulsion of a body in a liquid by means of rotation of internal masses with different speeds of rotation are presented. The dependence of the average propagation velocity, the amplitude of the transverse oscillations as a function of the rotational speed of internal masses is investigated. The obtained experimental data are compared with the results obtained within the framework of the proposed mathematical model.
-
Modeling of anisotropic convection for the binary fluid in porous medium
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 801-816We study an appearance of gravitational convection in a porous medium saturated by the double-diffusive fluid. The rectangle heated from below is considered with anisotropy of media properties. We analyze Darcy – Boussinesq equations for a binary fluid with Soret effect.
Resulting system for the stream function, the deviation of temperature and concentration is cosymmetric under some additional conditions for the parameters of the problem. It means that the quiescent state (mechanical equilibrium) loses its stability and a continuous family of stationary regimes branches off. We derive explicit formulas for the critical values of the Rayleigh numbers both for temperature and concentration under these conditions of the cosymmetry. It allows to analyze monotonic instability of mechanical equilibrium, the results of corresponding computations are presented.
A finite-difference discretization of a second-order accuracy is developed with preserving of the cosymmetry of the underlying system. The derived numerical scheme is applied to analyze the stability of mechanical equilibrium.
The appearance of stationary and nonstationary convective regimes is studied. The neutral stability curves for the mechanical equilibrium are presented. The map for the plane of the Rayleigh numbers (temperature and concentration) are displayed. The impact of the parameters of thermal diffusion on the Rayleigh concentration number is established, at which the oscillating instability precedes the monotonic instability. In the general situation, when the conditions of cosymmetry are not satisfied, the derived formulas of the critical Rayleigh numbers can be used to estimate the thresholds for the convection onset.
Keywords: convection, binary fluid, porous media, Soret effect, anisotropy, cosymmetry, finite-difference method.Views (last year): 27. -
Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107Views (last year): 34.Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.
Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.
-
On numerical solution of joint inverse geophysical problems with structural constraints
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 329-343Inverse geophysical problems are difficult to solve due to their mathematically incorrect formulation and large computational complexity. Geophysical exploration in frontier areas is even more complicated due to the lack of reliable geological information. In this case, inversion methods that allow interpretation of several types of geophysical data together are recognized to be of major importance. This paper is dedicated to one of such inversion methods, which is based on minimization of the determinant of the Gram matrix for a set of model vectors. Within the framework of this approach, we minimize a nonlinear functional, which consists of squared norms of data residual of different types, the sum of stabilizing functionals and a term that measures the structural similarity between different model vectors. We apply this approach to seismic and electromagnetic synthetic data set. Specifically, we study joint inversion of acoustic pressure response together with controlled-source electrical field imposing structural constraints on resulting electrical conductivity and P-wave velocity distributions.
We start off this note with the problem formulation and present the numerical method for inverse problem. We implemented the conjugate-gradient algorithm for non-linear optimization. The efficiency of our approach is demonstrated in numerical experiments, in which the true 3D electrical conductivity model was assumed to be known, but the velocity model was constructed during inversion of seismic data. The true velocity model was based on a simplified geology structure of a marine prospect. Synthetic seismic data was used as an input for our minimization algorithm. The resulting velocity model not only fit to the data but also has structural similarity with the given conductivity model. Our tests have shown that optimally chosen weight of the Gramian term may improve resolution of the final models considerably.
-
Parallel implementation of numerical algorithm of solving coupled internal ballistics modelling problem for solid rocket motors
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 47-65We present a physico-mathematical statement of coupled geometrical and gas dynamics problem of intrachamber processes simulation and calculation of main internal ballistics characteristics of solid rocket motors in axisymmetric approximation. Method and numerical algorithm of solving the problem are described in this paper. We track the propellant burning surface using the level set method. This method allows us to implicitly represent the surface on a fixed Cartesian grid as zero-level of some function. Two-dimensional gas-dynamics equations describe a flow of combustion products in a solid rocket motor. Due to inconsistency of domain boundaries and nodes of computational grid, presence of ghost points lying outside the computational domain is taken into account. For setting the values of flow parameters in ghost points, we use the inverse Lax – Wendroff procedure. We discretize spatial derivatives of level set and gas-dynamics equations with standard WENO schemes of fifth and third-order respectively and time derivatives using total variation diminishing Runge –Kutta methods. We parallelize the presented numerical algorithm using CUDA technology and further optimize it with regard to peculiarities of graphics processors architecture.
Created software package is used for calculating internal ballistics characteristics of nozzleless solid rocket motor during main firing phase. On the base of obtained numerical results, we discuss efficiency of parallelization using CUDA technology and applying considered optimizations. It has been shown that implemented parallelization technique leads to a significant acceleration in comparison with central processes. Distributions of key parameters of combustion products flow in different periods of time have been presented in this paper. We make a comparison of obtained results between quasione-dimensional approach and developed numerical technique.
-
Variational principle for shape memory solids under variable external forces and temperatures
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 541-555The quasistatic deformation problem for shape memory alloys is reviewed within the phenomenological mechanics of solids without microphysics analysis. The phenomenological approach is based on comparison of two material deformation diagrams. The first diagram corresponds to the active proportional loading when the alloy behaves as an ideal elastoplastic material; the residual strain is observed after unloading. The second diagram is relevant to the case when the deformed sample is heated to a certain temperature for each alloy. The initial shape is restored: the reverse distortion matches deformations on the first diagram, except for the sign. Because the first step of distortion can be described with the variational principle, for which the existence of the generalized solutions is proved under arbitrary loading, it becomes clear how to explain the reverse distortion within the slightly modified theory of plasticity. The simply connected surface of loading needs to be replaced with the doubly connected one, and the variational principle needs to be updated with two laws of thermodynamics and the principle of orthogonality for thermodynamic forces and streams. In this case it is not difficult to prove the existence of solutions either. The successful application of the theory of plasticity under the constant temperature causes the need to obtain a similar result for a more general case of variable external forces and temperatures. The paper studies the ideal elastoplastic von Mises model at linear strain rates. Taking into account hardening and arbitrary loading surface does not cause any additional difficulties.
The extended variational principle of the Reissner type is defined. Together with the laws of thermal plasticity it enables to prove the existence of the generalized solutions for three-dimensional bodies made of shape memory materials. The main issue to resolve is a challenge to choose a functional space for the rates and deformations of the continuum points. The space of bounded deformation, which is the main instrument of the mathematical theory of plasticity, serves this purpose in the paper. The proving process shows that the choice of the functional spaces used in the paper is not the only one. The study of other possible problem settings for the extended variational principle and search for regularity of generalized solutions seem an interesting challenge for future research.
-
Fast adaptive by constants of strong-convexity and Lipschitz for gradient first order methods
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 947-963The work is devoted to the construction of efficient and applicable to real tasks first-order methods of convex optimization, that is, using only values of the target function and its derivatives. Construction uses OGMG, fast gradient method which is optimal by complexity, but requires to know the Lipschitz constant for gradient and the strong convexity constant to determine the number of steps and step length. This requirement makes practical usage very hard. An adaptive on the constant for strong convexity algorithm ACGM is proposed, based on restarts of the OGM-G with update of the strong convexity constant estimate, and an adaptive on the Lipschitz constant for gradient ALGM, in which the use of OGM-G restarts is supplemented by the selection of the Lipschitz constant with verification of the smoothness conditions used in the universal gradient descent method. This eliminates the disadvantages of the original method associated with the need to know these constants, which makes practical usage possible. Optimality of estimates for the complexity of the constructed algorithms is proved. To verify the results obtained, experiments on model functions and real tasks from machine learning are carried out.
-
Diffusion–reaction–advection equations for the predator–prey system in a heterogeneous environment
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1161-1176We analyze variants of considering the inhomogeneity of the environment in computer modeling of the dynamics of a predator and prey based on a system of reaction-diffusion–advection equations. The local interaction of species (reaction terms) is described by the logistic law for the prey and the Beddington –DeAngelis functional response, special cases of which are the Holling type II functional response and the Arditi – Ginzburg model. We consider a one-dimensional problem in space for a heterogeneous resource (carrying capacity) and three types of taxis (the prey to resource and from the predator, the predator to the prey). An analytical approach is used to study the stability of stationary solutions in the case of local interaction (diffusionless approach). We employ the method of lines to study diffusion and advective processes. A comparison of the critical values of the mortality parameter of predators is given. Analysis showed that at constant coefficients in the Beddington –DeAngelis model, critical values are variable along the spatial coordinate, while we do not observe this effect for the Arditi –Ginzburg model. We propose a modification of the reaction terms, which makes it possible to take into account the heterogeneity of the resource. Numerical results on the dynamics of species for large and small migration coefficients are presented, demonstrating a decrease in the influence of the species of local members on the emerging spatio-temporal distributions of populations. Bifurcation transitions are analyzed when changing the parameters of diffusion–advection and reaction terms.
-
Analysis of the dispersion characteristics of metallic photonic crystals by the plane-wave expansion method
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1059-1068A method for studying the dispersion characteristics of photonic crystals — media with a dielectric constant that varies periodically in space — is considered. The method is based on the representation of the wave functions and permittivity of a periodic medium in the form of Fourier series and their subsequent substitution into the wave equation, which leads to the formulation of the dispersion equation. Using the latter, for each value of the wave vector it is possible determined a set of eigen frequencies. Each of eigen frequency forms a separate dispersion curve as a continuous function of the wave number. The Fourier expansion coefficients of the permittivity, which depend on the vectors of the reciprocal lattice of the photonic crystal, are determined on the basis of data on the geometric characteristics of the elements that form the crystal, their electrophysical properties and the density of the crystal. The solution of the dispersion equation found makes it possible to obtain complete information about the number of modes propagating in a periodic structure at different frequencies, and about the possibility of forming band gaps, i.e. frequency ranges within which wave propagation through a photonic crystal is impossible. The focus of this work is on the application of this method to the analysis of the dispersion properties of metallic photonic crystals. The difficulties that arise in this case due to the presence of intrinsic dispersion properties of the metals that form the elements of the crystal are overcome by an analytical description of their permittivity based on the model of free electrons. As a result, a dispersion equation is formulated, the numerical solution of which is easily algorithmized. That makes possible to determine the dispersion characteristics of metallic photonic crystals with arbitrary parameters. Obtained by this method the results of calculation of dispersion diagrams, which characterize two-dimensional metal photonic crystals, are compared with experimental data and numerical results obtained using the method of self-consistent equations. Their good agreement is demonstrated.
-
Algorithm for vortices identification based on flow velocity vectors using the simplest mathematical model of vortex dynamics
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1477-1493An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"