All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
A surrogate neural network model for resolving the flow field in serial calculations of steady turbulent flows with a resolution of the nearwall region
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1195-1216When modeling turbulent flows in practical applications, it is often necessary to carry out a series of calculations of bodies of similar topology. For example, bodies that differ in the shape of the fairing. The use of convolutional neural networks allows to reduce the number of calculations in a series, restoring some of them based on calculations already performed. The paper proposes a method that allows to apply a convolutional neural network regardless of the method of constructing a computational mesh. To do this, the flow field is reinterpolated to a uniform mesh along with the body itself. The geometry of the body is set using the signed distance function and masking. The restoration of the flow field based on part of the calculations for similar geometries is carried out using a neural network of the UNet type with a spatial attention mechanism. The resolution of the nearwall region, which is a critical condition for turbulent modeling, is based on the equations obtained in the nearwall domain decomposition method.
A demonstration of the method is given for the case of a flow around a rounded plate by a turbulent air flow with different rounding at fixed parameters of the incoming flow with the Reynolds number $Re = 10^5$ and the Mach number $M = 0.15$. Since flows with such parameters of the incoming flow can be considered incompressible, only the velocity components are studied directly. The flow fields, velocity and friction profiles obtained by the surrogate model and numerically are compared. The analysis is carried out both on the plate and on the rounding. The simulation results confirm the prospects of the proposed approach. In particular, it was shown that even if the model is used at the maximum permissible limits of its applicability, friction can be obtained with an accuracy of up to 90%. The work also analyzes the constructed architecture of the neural network. The obtained surrogate model is compared with alternative models based on a variational autoencoder or the principal component analysis using radial basis functions. Based on this comparison, the advantages of the proposed method are demonstrated.
-
Comparative analysis of optimization methods for electrical energy losses interval evaluation problem
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 231-239Views (last year): 2. Citations: 1 (RSCI).This article is dedicated to a comparison analysis of optimization methods, in order to perform an interval estimation of electrical energy technical losses in distribution networks of voltage 6–20 kV. The issue of interval evaluation is represented as a multi-dimensional conditional minimization/maximization problem with implicit target function. A number of numerical optimization methods of first and zero orders is observed, with the aim of determining the most suitable for the problem of interest. The desired algorithm is BOBYQA, in which the target function is replaced with its quadratic approximation in some trusted region.
-
Simple behavioral model of imprint formation
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 793-802Views (last year): 5. Citations: 2 (RSCI).Formation of adequate behavioral patterns in condition of the unknown environment carried out through exploratory behavior. At the same time the rapid formation of an acceptable pattern is more preferable than a long elaboration perfect pattern through repeat play learning situation. In extreme situations, phenomenon of imprinting is observed — instant imprinting of behavior pattern, which ensure the survival of individuals. In this paper we propose a hypothesis and imprint model when trained on a single successful pattern of virtual robot's neural network demonstrates the effective functioning. Realism of the model is estimated by checking the stability of playback behavior pattern to perturbations situation imprint run.
-
Exploration of 2-neuron memory units in spiking neural networks
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 401-416Working memory mechanisms in spiking neural networks consisting of leaky integrate-and-fire neurons with adaptive threshold and synaptic plasticity are studied in this work. Moderate size networks including thousands of neurons were explored. Working memory is a network ability to keep in its state the information about recent stimuli presented to the network such that this information is sufficient to determine which stimulus has been presented. In this study, network state is defined as the current characteristics of network activity only — without internal state of its neurons. In order to discover the neuronal structures serving as a possible substrate of the memory mechanism, optimization of the network parameters and structure using genetic algorithm was carried out. Two kinds of neuronal structures with the desired properties were found. These are neuron pairs mutually connected by strong synaptic links and long tree-like neuronal ensembles. It was shown that only the neuron pairs are suitable for efficient and reliable implementation of working memory. Properties of such memory units and structures formed by them are explored in the present study. It is shown that characteristics of the studied two-neuron memory units can be set easily by the respective choice of the parameters of its neurons and synaptic connections. Besides that, this work demonstrates that ensembles of these structures can provide the network with capability of unsupervised learning to recognize patterns in the input signal.
-
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
-
Technoscape: multi-agent model for evolution of network of cities, joined by production and trade links
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 163-178The paper presents agent-based model for city formation named Technoscape which is both local and nonlocal. Technoscape can, to a certain degree, be also assumed as a model for emergence of global economy. The current version of the model implements very simple way of agents’ behavior and interaction, still the model provides rather interesting spatio-temporal patterns.
Locality and non-locality mean here the spatial features of the way the agents interact with each other and with geographical space upon which the evolution takes place. Technoscape agent is some conventional artisan, family, or а producing and trading firm, while there is no difference between production and trade. Agents are located upon and move through bounded two-dimensional space divided into square cells. The model demonstrates processes of agents’ concentration in a small set of cells, which is interpreted as «city» formation. Agents are immortal, they don’t mutate and evolve, though this is interesting perspective for the evolution of the model itself.
Technoscape provides some distinctively new type of self-organization. Partially, this type of selforganization resembles the behavior of segregation model by Thomas Shelling, still that model has evolution rules substantially different from Technoscape. In Shelling model there exist avalanches still simple equilibria exist if no new agents are added to the game board, while in Technoscape no such equilibria exist. At best, we can observe quasi-equilibrium, slowly changing global states.
One non-trivial phenomenon Technoscape exhibits, which also contrasts to Shelling segregation model, is the ability of agents to concentrate in local cells (interpreted as cities) even explicitly and totally ignoring local interactions, using non-local interactions only.
At the same time, while the agents tend to concentrate in large one-cell cities, large scale of such cities does not guarantee them from decay: there always exists a process of «enticement» of agents and their flow to new cities.
-
Coherent constant delay transceiver for a synchronous fiber optic network
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 141-155This paper proposes the implementation of a coherent transceiver with a constant delay and the ability to select any clock frequency grid used for clocking peripheral DACs and ADCs, tasks of device synchronization and data transmission. The choice of the required clock frequency grid directly affects the data transfer rate in the network, however, it allows one to flexibly configure the network for the tasks of transmitting clock signals and subnanosecond generation of sync signals on all devices in the network. A method for increasing the synchronization accuracy to tenths of nanoseconds by using digital phase detectors and a Phase Locked Loop (PLL) system on the slave device is proposed. The use of high-speed fiber-optic communication lines (FOCL) for synchronization tasks allows simultaneously exchanging control commands and signaling data. To simplify and reduce the cost of devices of a synchronous network of transceivers, it is proposed to use a clock signal restored from a data transmission line to filter phase noise and form a frequency grid in the PLL system for heterodyne signals and clock peripheral devices, including DAC and ADC. The results of multiple synchronization tests in the proposed synchronous network are presented.
-
Computer model development for a verified computational experiment to restore the parameters of bodies with arbitrary shape and dielectric properties
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1555-1571The creation of a virtual laboratory stand that allows one to obtain reliable characteristics that can be proven as actual, taking into account errors and noises (which is the main distinguishing feature of a computational experiment from model studies) is one of the main problems of this work. It considers the following task: there is a rectangular waveguide in the single operating mode, on the wide wall of which a technological hole is cut, through which a sample for research is placed into the cavity of the transmission line. The recovery algorithm is as follows: the laboratory measures the network parameters (S11 and/or S21) in the transmission line with the sample. In the computer model of the laboratory stand, the sample geometry is reconstructed and an iterative process of optimization (or sweeping) of the electrophysical parameters is started, the mask of this process is the experimental data, and the stop criterion is the interpretive estimate of proximity (or residual). It is important to note that the developed computer model, along with its apparent simplicity, is initially ill-conditioned. To set up a computational experiment, the Comsol modeling environment is used. The results of the computational experiment with a good degree of accuracy coincided with the results of laboratory studies. Thus, experimental verification was carried out for several significant components, both the computer model in particular and the algorithm for restoring the target parameters in general. It is important to note that the computer model developed and described in this work may be effectively used for a computational experiment to restore the full dielectric parameters of a complex geometry target. Weak bianisotropy effects can also be detected, including chirality, gyrotropy, and material nonreciprocity. The resulting model is, by definition, incomplete, but its completeness is the highest of the considered options, while at the same time, the resulting model is well conditioned. Particular attention in this work is paid to the modeling of a coaxial-waveguide transition, it is shown that the use of a discrete-element approach is preferable to the direct modeling of the geometry of a microwave device.
-
Improving the quality of route generation in SUMO based on data from detectors using reinforcement learning
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 137-146This work provides a new approach for constructing high-precision routes based on data from transport detectors inside the SUMO traffic modeling package. Existing tools such as flowrouter and routeSampler have a number of disadvantages, such as the lack of interaction with the network in the process of building routes. Our rlRouter uses multi-agent reinforcement learning (MARL), where the agents are incoming lanes and the environment is the road network. By performing actions to launch vehicles, agents receive a reward for matching data from transport detectors. Parameter Sharing DQN with the LSTM backbone of the Q-function was used as an algorithm for multi-agent reinforcement learning.
Since the rlRouter is trained inside the SUMO simulation, it can restore routes better by taking into account the interaction of vehicles within the network with each other and with the network infrastructure. We have modeled diverse traffic situations on three different junctions in order to compare the performance of SUMO’s routers with the rlRouter. We used Mean Absoluter Error (MAE) as the measure of the deviation from both cumulative detectors and routes data. The rlRouter achieved the highest compliance with the data from the detectors. We also found that by maximizing the reward for matching detectors, the resulting routes also get closer to the real ones. Despite the fact that the routes recovered using rlRouter are superior to the routes obtained using SUMO tools, they do not fully correspond to the real ones, due to the natural limitations of induction-loop detectors. To achieve more plausible routes, it is necessary to equip junctions with other types of transport counters, for example, camera detectors.
-
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"