Результаты поиска по 'numerical method':
Найдено статей: 311
  1. Zaika Y.V., Rodchenkova N.I., Sidorov N.I.
    Modeling of H2-permeability of alloys for gas separation membranes
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 121-135

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. A considerable part of hydrogen is to be obtained by methane conversion. Different alloys, which may be wellsuited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear model of hydrogen permeability in accordance with the specifics of the experiment, the numerical method for solving the boundary-value problem, and the results of parametric identification for the alloy V85Ni15.

    Views (last year): 1. Citations: 7 (RSCI).
  2. The paper develops a new mathematical method of the joint signal and noise calculation at the Rice statistical distribution based on combing the maximum likelihood method and the method of moments. The calculation of the sough-for values of signal and noise is implemented by processing the sampled measurements of the analyzed Rician signal’s amplitude. The explicit equations’ system has been obtained for required signal and noise parameters and the results of its numerical solution are provided confirming the efficiency of the proposed technique. It has been shown that solving the two-parameter task by means of the proposed technique does not lead to the increase of the volume of demanded calculative resources if compared with solving the task in one-parameter approximation. An analytical solution of the task has been obtained for the particular case of small value of the signal-to-noise ratio. The paper presents the investigation of the dependence of the sought for parameters estimation accuracy and dispersion on the quantity of measurements in experimental sample. According to the results of numerical experiments, the dispersion values of the estimated sought-for signal and noise parameters calculated by means of the proposed technique change in inverse proportion to the quantity of measurements in a sample. There has been implemented a comparison of the accuracy of the soughtfor Rician parameters’ estimation by means of the proposed technique and by earlier developed version of the method of moments. The problem having been considered in the paper is meaningful for the purposes of Rician data processing, in particular, at the systems of magnetic-resonance visualization, in devices of ultrasonic visualization, at optical signals’ analysis in range-measuring systems, at radar signals’ analysis, as well as at solving many other scientific and applied tasks that are adequately described by the Rice statistical model.

    Views (last year): 11.
  3. Malsagov M.X., Ougolnitsky G.A., Usov A.B.
    Struggle against economic corruption in resource allocation
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 173-185

    A dynamic game theoretic model of struggle against corruption in resource allocation is considered. It is supposed that the system of resource allocation includes one principal, one or several supervisors, and several agents. The relations between them are hierarchical: the principal influences to the supervisors, and they in turn exert influence on the agents. It is assumed that the supervisor can be corrupted. The agents propose bribes to the supervisor who in exchange allocates additional resources to them. It is also supposed that the principal is not corrupted and does not have her own purposes. The model is investigated from the point of view of the supervisor and the agents. From the point of view of agents a non-cooperative game arises with a set of Nash equilibria as a solution. The set is found analytically on the base of Pontryagin maximum principle for the specific class of model functions. From the point of view of the supervisor a hierarchical Germeyer game of the type Г2t is built, and the respective algorithm of its solution is proposed. The punishment strategy is found analytically, and the reward strategy is built numerically on the base of a discrete analogue of the initial continuous- time model. It is supposed that all agents can change their strategies in the same time instants only a finite number of times. Thus, the supervisor can maximize his objective function of many variables instead of maximization of the objective functional. A method of qualitatively representative scenarios is used for the solution. The idea of this method consists in that it is possible to choose a very small number of scenarios among all potential ones that represent all qualitatively different trajectories of the system dynamics. These scenarios differ in principle while all other scenarios yield no essentially new results. Then a complete enumeration of the qualitatively representative scenarios becomes possible. After that, the supervisor reports to the agents the rewardpunishment control mechanism.

    Views (last year): 33. Citations: 1 (RSCI).
  4. Ketova K.V., Romanovsky Y.M., Rusyak I.G.
    Mathematical modeling of the human capital dynamic
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342

    In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.

    This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.

    The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.

    Views (last year): 34.
  5. Methi G., Kumar A.
    Numerical Solution of Linear and Higher-order Delay Differential Equations using the Coded Differential Transform Method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1091-1099

    The aim of the paper is to obtain a numerical solution for linear and higher-order delay differential equations (DDEs) using the coded differential transform method (CDTM). The CDTM is developed and applied to delay problems to show the efficiency of the proposed method. The coded differential transform method is a combination of the differential transform method and Mathematica software. We construct recursive relations for a few delay problems, which results in simultaneous equations, and solve them to obtain various series solution terms using the coded differential transform method. The numerical solution obtained by CDTM is compared with an exact solution. Numerical results and error analysis are presented for delay differential equations to show that the proposed method is suitable for solving delay differential equations. It is established that the delay differential equations under discussion are solvable in a specific domain. The error between the CDTM solution and the exact solution becomes very small if more terms are included in the series solution. The coded differential transform method reduces complex calculations, avoids discretization, linearization, and saves calculation time. In addition, it is easy to implement and robust. Error analysis shows that CDTM is consistent and converges fast. We obtain more accurate results using the coded differential transform method as compared to other methods.

  6. Khusainov R.R., Mamedov S.N., Savin S.I., Klimchik A.S.
    Searching for realizable energy-efficient gaits of planar five-link biped with a point contact
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 155-170

    In this paper, we discuss the procedure for finding nominal trajectories of the planar five-link bipedal robot with point contact. To this end we use a virtual constraints method that transforms robot’s dynamics to a lowdimensional zero manifold; we also use a nonlinear optimization algorithms to find virtual constraints parameters that minimize robot’s cost of transportation. We analyzed the effect of the degree of Bezier polynomials that approximate the virtual constraints and continuity of the torques on the cost of transportation. Based on numerical results we found that it is sufficient to consider polynomials with degrees between five and six, as further increase in the degree of polynomial results in increased computation time while it does not guarantee reduction of the cost of transportation. Moreover, it was shown that introduction of torque continuity constraints does not lead to significant increase of the objective function and makes the gait more implementable on a real robot.

    We propose a two step procedure for finding minimum of the considered optimization problem with objective function in the form of cost of transportation and with high number of constraints. During the first step we solve a feasibility problem: remove cost function (set it to zero) and search for feasible solution in the parameter space. During the second step we introduce the objective function and use the solution found in the first step as initial guess. For the first step we put forward an algorithm for finding initial guess that considerably reduced optimization time of the first step (down to 3–4 seconds) compared to random initialization. Comparison of the objective function of the solutions found during the first and second steps showed that on average during the second step objective function was reduced twofold, even though overall computation time increased significantly.

  7. Savin S.I., Vorochaeva L.I., Kurenkov V.V.
    Mathematical modelling of tensegrity robots with rigid rods
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 821-830

    In this paper, we address the mathematical modeling of robots based on tensegrity structures. The pivotal property of such structures is the forming elements working only for compression or tension, which allows the use of materials and structural solutions that minimize the weight of the structure while maintaining its strength.

    Tensegrity structures hold several properties important for collaborative robotics, exploration and motion tasks in non-deterministic environments: natural compliance, compactness for transportation, low weight with significant impact resistance and rigidity. The control of such structures remains an open research problem, which is associated with the complexity of describing the dynamics of such structures.

    We formulate an approach for describing the dynamics of such structures, based on second-order dynamics of the Cartesian coordinates of structure elements (rods), first-order dynamics for angular velocities of rods, and first-order dynamics for quaternions that are used to describe the orientation of rods. We propose a numerical method for solving these dynamic equations. The proposed methods are implemented in the form of a freely distributed mathematical package with open source code.

    Further, we show how the provided software package can be used for modeling the dynamics and determining the operating modes of tensegrity structures. We present an example of a tensegrity structure moving in zero gravity with three rigid rods and nine elastic elements working in tension (cables), showing the features of the dynamics of the structure in reaching the equilibrium position. The range of initial conditions for which the structure operates in the normal mode is determined. The results can be directly used to analyze the nature of passive dynamic movements of the robots based on a three-link tensegrity structure, considered in the paper; the proposed modeling methods and the developed software are suitable for modeling a significant variety of tensegrity robots.

  8. Vasiliev E.V., Perzhu A.V., Korol A.O., Kapitan D.Y., Rubin A.E., Soldatov K.S., Kapitan V.U.
    Numerical simulation of two-dimensional magnetic skyrmion structures
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1051-1061

    Magnetic systems, in which due to competition between the direct Heisenberg exchange and the Dzyaloshinskii –Moriya interaction, magnetic vortex structures — skyrmions appear, were studied using the Metropolis algorithm.

    The conditions for the nucleation and stable existence of magnetic skyrmions in two-dimensional magnetic films in the frame of the classical Heisenberg model were considered in the article. A thermal stability of skyrmions in a magnetic film was studied. The processes of the formation of various states in the system at different values of external magnetic fields were considered, various phases into which the Heisenberg spin system passes were recognized. The authors identified seven phases: paramagnetic, spiral, labyrinth, spiralskyrmion, skyrmion, skyrmion-ferromagnetic and ferromagnetic phases, a detailed analysis of the configurations is given in the article.

    Two phase diagrams were plotted: the first diagram shows the behavior of the system at a constant $D$ depending on the values of the external magnetic field and temperature $(T, B)$, the second one shows the change of the system configurations at a constant temperature $T$ depending on the magnitude of the Dzyaloshinskii – Moriya interaction and external magnetic field: $(D, B)$.

    The data from these numerical experiments will be used in further studies to determine the model parameters of the system for the formation of a stable skyrmion state and to develop methods for controlling skyrmions in a magnetic film.

  9. Aristov V.V., Stroganov A.V., Yastrebov A.D.
    Application of the kinetic type model for study of a spatial spread of COVID-19
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627

    A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.

  10. Umavovskiy A.V.
    Data-driven simulation of a two-phase flow in heterogenous porous media
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 779-792

    The numerical methods used to simulate the evolution of hydrodynamic systems require the considerable use of computational resources thus limiting the number of possible simulations. The data-driven simulation technique is one promising approach to the development of heuristic models, which may speed up the study of such models. In this approach, machine learning methods are used to tune the weights of an artificial neural network that predicts the state of a physical system at a given point in time based on initial conditions. This article describes an original neural network architecture and a novel multi-stage training procedure which create a heuristic model of a two-phase flow in a heterogeneous porous medium. The neural network-based model predicts the states of the grid cells at an arbitrary timestep (within the known constraints), taking in only the initial conditions: the properties of the heterogeneous permeability of the medium and the location of sources and sinks. The proposed model requires orders of magnitude less processor time in comparison with the classical numerical method, which served as a criterion for evaluating the effectiveness of the trained model. The proposed architecture includes a number of subnets trained in various combinations on several datasets. The techniques of adversarial training and weight transfer are utilized.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"