All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Neural network methods for optimal control problems
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 539-557In this study we discuss methods to solve optimal control problems based on neural network techniques. We study hierarchical dynamical two-level system for surface water quality control. The system consists of a supervisor (government) and a few agents (enterprises). We consider this problem from the point of agents. In this case we solve optimal control problem with constraints. To solve this problem, we use Pontryagin’s maximum principle, with which we obtain optimality conditions. To solve emerging ODEs, we use feedforward neural network. We provide a review of existing techniques to study such problems and a review of neural network’s training methods. To estimate the error of numerical solution, we propose to use defect analysis method, adapted for neural networks. This allows one to get quantitative error estimations of numerical solution. We provide examples of our method’s usage for solving synthetic problem and a surface water quality control model. We compare the results of this examples with known solution (when provided) and the results of shooting method. In all cases the errors, estimated by our method are of the same order as the errors compared with known solution. Moreover, we study surface water quality control problem when no solutions is provided by other methods. This happens because of relatively large time interval and/or the case of several agents. In the latter case we seek Nash equilibrium between agents. Thus, in this study we show the ability of neural networks to solve various problems including optimal control problems and differential games and we show the ability of quantitative estimation of an error. From the numerical results we conclude that the presence of the supervisor is necessary for achieving the sustainable development.
-
Struggle against economic corruption in resource allocation
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 173-185Views (last year): 33. Citations: 1 (RSCI).A dynamic game theoretic model of struggle against corruption in resource allocation is considered. It is supposed that the system of resource allocation includes one principal, one or several supervisors, and several agents. The relations between them are hierarchical: the principal influences to the supervisors, and they in turn exert influence on the agents. It is assumed that the supervisor can be corrupted. The agents propose bribes to the supervisor who in exchange allocates additional resources to them. It is also supposed that the principal is not corrupted and does not have her own purposes. The model is investigated from the point of view of the supervisor and the agents. From the point of view of agents a non-cooperative game arises with a set of Nash equilibria as a solution. The set is found analytically on the base of Pontryagin maximum principle for the specific class of model functions. From the point of view of the supervisor a hierarchical Germeyer game of the type Г2t is built, and the respective algorithm of its solution is proposed. The punishment strategy is found analytically, and the reward strategy is built numerically on the base of a discrete analogue of the initial continuous- time model. It is supposed that all agents can change their strategies in the same time instants only a finite number of times. Thus, the supervisor can maximize his objective function of many variables instead of maximization of the objective functional. A method of qualitatively representative scenarios is used for the solution. The idea of this method consists in that it is possible to choose a very small number of scenarios among all potential ones that represent all qualitatively different trajectories of the system dynamics. These scenarios differ in principle while all other scenarios yield no essentially new results. Then a complete enumeration of the qualitatively representative scenarios becomes possible. After that, the supervisor reports to the agents the rewardpunishment control mechanism.
-
Numerical method for finding Nash and Shtakelberg equilibria in river water quality control models
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 653-667In this paper we consider mathematical model to control water quality. We study a system with two-level hierarchy: one environmental organization (supervisor) at the top level and a few industrial enterprises (agents) at the lower level. The main goal of the supervisor is to keep water pollution level below certain value, while enterprises pollute water, as a side effect of the manufacturing process. Supervisor achieves its goal by charging a penalty for enterprises. On the other hand, enterprises choose how much to purify their wastewater to maximize their income.The fee increases the budget of the supervisor. Moreover, effulent fees are charged for the quantity and/or quality of the discharged pollution. Unfortunately, in practice, such charges are ineffective due to the insufficient tax size. The article solves the problem of determining the optimal size of the charge for pollution discharge, which allows maintaining the quality of river water in the rear range.
We describe system members goals with target functionals, and describe water pollution level and enterprises state as system of ordinary differential equations. We consider the problem from both supervisor and enterprises sides. From agents’ point a normal-form game arises, where we search for Nash equilibrium and for the supervisor, we search for Stackelberg equilibrium. We propose numerical algorithms for finding both Nash and Stackelberg equilibrium. When we construct Nash equilibrium, we solve optimal control problem using Pontryagin’s maximum principle. We construct Hamilton’s function and solve corresponding system of partial differential equations with shooting method and finite difference method. Numerical calculations show that the low penalty for enterprises results in increasing pollution level, when relatively high penalty can result in enterprises bankruptcy. This leads to the problem of choosing optimal penalty, which requires considering problem from the supervisor point. In that case we use the method of qualitatively representative scenarios for supervisor and Pontryagin’s maximum principle for agents to find optimal control for the system. At last, we compute system consistency ratio and test algorithms for different data. The results show that a hierarchical control is required to provide system stability.
-
Water consumption control model for regions with low water availability
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1395-1410This paper considers the problem of water consumption in the regions of Russia with low water availability. We provide a review of the existing methods to control quality and quantity of water resources at different scales — from households to worldwide. The paper itself considers regions with low “water availability” parameter which is amount of water per person per year. Special attention is paid to the regions, where this parameter is low because of natural features of the region, not because of high population. In such regions many resources are spend on water processing infrastructure to store water and transport water from other regions. In such regions the main water consumers are industry and agriculture.
We propose dynamic two-level hierarchical model which matches water consumption of a region with its gross regional product. On the top level there is a regional administration (supervisor) and on the lower level there are region enterprises (agents). The supervisor sets fees for water consumption. We study the model with Pontryagin’s maximum principle and provide agents’s optimal control in analytical form. For the supervisor’s control we provide numerical algorithm. The model has six free coefficients, which can be chosen so the model represents a particular region. We use data from Russia Federal State Statistics Service for identification process of a model. For numerical analysis we use trust region reflective algorithms. We provide calculations for a few regions with low water availability. It is shown that it is possible to reduce water consumption of a region more than by 20% while gross regional product drop is less than 10%.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"