Результаты поиска по 'numerical modelling':
Найдено статей: 330
  1. The main aim, formulated in the first part of article, is to carry out detailed numerical studies of the chemical, ionization, optical, and temperature characteristics of the lower ionosphere perturbed by powerful radio emission. The brief review of the main experimental and theoretical researches of physical phenomena occurring in the ionosphere when it is heated by high-power high-frequency radio waves from heating facilities is given. The decisive role of the $D$-region of the ionosphere in the absorption of radio beam energy is shown. A detailed analysis of kinetic processes in the disturbed $D$-region, which is the most complex in kinetic terms, has been performed. It is shown that for a complete description of the ionization-chemical and optical characteristics of the disturbed region, it is necessary to take into account more than 70 components, which, according to their main physical content, can be conveniently divided into five groups. A kinetic model is presented to describe changes in the concentrations of components interacting (the total number of reactions is 259). The system of kinetic equations was solved using a semi-implicit numerical method specially adapted to such problems. Based on the proposed structure, a software package was developed in which the algorithm scheme allowed changing both the content of individual program blocks and their number, which made it possible to conduct detailed numerical studies of individual processes in the behavior of the parameters of the perturbed region. The complete numerical algorithm is based on the two-temperature approximation, in which the main attention was paid to the calculation of the electron temperature, since its behavior is determined by inelastic kinetic processes involving electrons. The formulation of the problem is of a rather general nature and makes it possible to calculate the parameters of the disturbed ionosphere in a wide range of powers and frequencies of radio emission. Based on the developed numerical technique, it is possible to study a wide range of phenomena both in the natural and disturbed ionosphere.

  2. Aksenov A.A., Zhluktov S.V., Kashirin V.S., Sazonova M.L., Cherny S.G., Drozdova E.A., Rode A.A.
    Numerical modeling of raw atomization and vaporization by flow of heat carrier gas in furnace technical carbon production into FlowVision
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 921-939

    Technical carbon (soot) is a product obtained by thermal decomposition (pyrolysis) of hydrocarbons (usually oil) in a stream of heat carrier gas. Technical carbon is widely used as a reinforcing component in the production of rubber and plastic masses. Tire production uses 70% of all carbon produced. In furnace carbon production, the liquid hydrocarbon feedstock is injected into the natural gas combustion product stream through nozzles. The raw material is atomized and vaporized with further pyrolysis. It is important for the raw material to be completely evaporated before the pyrolysis process starts, otherwise coke, that contaminates the product, will be produced. It is impossible to operate without mathematical modeling of the process itself in order to improve the carbon production technology, in particular, to provide the complete evaporation of the raw material prior to the pyrolysis process. Mathematical modelling is the most important way to obtain the most complete and detailed information about the peculiarities of reactor operation.

    A three-dimensional mathematical model and calculation method for raw material atomization and evaporation in the thermal gas flow are being developed in the FlowVision software package PC. Water is selected as a raw material to work out the modeling technique. The working substances in the reactor chamber are the combustion products of natural gas. The motion of raw material droplets and evaporation in the gas stream are modeled in the framework of the Eulerian approach of interaction between dispersed and continuous media. The simulation results of raw materials atomization and evaporation in a real reactor for technical carbon production are presented. Numerical method allows to determine an important atomization characteristic: average Sauter diameter. That parameter could be defined from distribution of droplets of raw material at each time of spray forming.

  3. Lopato A.I., Poroshyna Y.E., Utkin P.S.
    Numerical study of the mechanisms of propagation of pulsating gaseous detonation in a non-uniform medium
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1263-1282

    In the last few years, significant progress has been observed in the field of rotating detonation engines for aircrafts. Scientific laboratories around the world conduct both fundamental researches related, for example, to the issues of effective mixing of fuel and oxidizer with the separate supply, and applied development of existing prototypes. The paper provides a brief overview of the main results of the most significant recent computational work on the study of propagation of a onedimensional pulsating gaseous detonation wave in a non-uniform medium. The general trends observed by the authors of these works are noted. In these works, it is shown that the presence of parameter perturbations in front of the wave front can lead to regularization and to resonant amplification of pulsations behind the detonation wave front. Thus, there is an appealing opportunity from a practical point of view to influence the stability of the detonation wave and control it. The aim of the present work is to create an instrument to study the gas-dynamic mechanisms of these effects.

    The mathematical model is based on one-dimensional Euler equations supplemented by a one-stage model of the kinetics of chemical reactions. The defining system of equations is written in the shock-attached frame that leads to the need to add a shock-change equations. A method for integrating this equation is proposed, taking into account the change in the density of the medium in front of the wave front. So, the numerical algorithm for the simulation of detonation wave propagation in a non-uniform medium is proposed.

    Using the developed algorithm, a numerical study of the propagation of stable detonation in a medium with variable density as carried out. A mode with a relatively small oscillation amplitude is investigated, in which the fluctuations of the parameters behind the detonation wave front occur with the frequency of fluctuations in the density of the medium. It is shown the relationship of the oscillation period with the passage time of the characteristics C+ and C0 over the region, which can be conditionally considered an induction zone. The phase shift between the oscillations of the velocity of the detonation wave and the density of the gas before the wave is estimated as the maximum time of passage of the characteristic C+ through the induction zone.

  4. Malikov Z.M., Nazarov F.K., Madaliev M.E.
    Numerical study of Taylor – Cuetta turbulent flow
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 395-408

    In this paper, the turbulent Taylor – Couette flow is investigated using two-dimensional modeling based on the averaged Navier – Stokes (RANS) equations and a new two-fluid approach to turbulence at Reynolds numbers in the range from 1000 to 8000. The flow due to a rotating internal and stationary external cylinders. The case of ratio of cylinder diameters 1:2 is considered. It is known that the emerging circular flow is characterized by anisotropic turbulence and mathematical modeling of such flows is a difficult task. To describe such flows, either direct modeling methods are used, which require large computational costs, or rather laborious Reynolds stress methods, or linear RANS models with special corrections for rotation, which are able to describe anisotropic turbulence. In order to compare different approaches to turbulence modeling, the paper presents the numerical results of linear RANS models SARC, SST-RC, Reynolds stress method SSG/LRR-RSM-w2012, DNS direct turbulence modeling, as well as a new two-fluid model. It is shown that the recently developed twofluid model adequately describes the considered flow. In addition, the two-fluid model is easy to implement numerically and has good convergence.

  5. The article deals with the nonlinear boundary-value problem of hydrogen permeability corresponding to the following experiment. A membrane made of the target structural material heated to a sufficiently high temperature serves as the partition in the vacuum chamber. Degassing is performed in advance. A constant pressure of gaseous (molecular) hydrogen is built up at the inlet side. The penetrating flux is determined by mass-spectrometry in the vacuum maintained at the outlet side.

    A linear model of dependence on concentration is adopted for the coefficient of dissolved atomic hydrogen diffusion in the bulk. The temperature dependence conforms to the Arrhenius law. The surface processes of dissolution and sorptiondesorption are taken into account in the form of nonlinear dynamic boundary conditions (differential equations for the dynamics of surface concentrations of atomic hydrogen). The characteristic mathematical feature of the boundary-value problem is that concentration time derivatives are included both in the diffusion equation and in the boundary conditions with quadratic nonlinearity. In terms of the general theory of functional differential equations, this leads to the so-called neutral type equations and requires a more complex mathematical apparatus. An iterative computational algorithm of second-(higher- )order accuracy is suggested for solving the corresponding nonlinear boundary-value problem based on explicit-implicit difference schemes. To avoid solving the nonlinear system of equations at every time step, we apply the explicit component of difference scheme to slower sub-processes.

    The results of numerical modeling are presented to confirm the fitness of the model to experimental data. The degrees of impact of variations in hydrogen permeability parameters (“derivatives”) on the penetrating flux and the concentration distribution of H atoms through the sample thickness are determined. This knowledge is important, in particular, when designing protective structures against hydrogen embrittlement or membrane technologies for producing high-purity hydrogen. The computational algorithm enables using the model in the analysis of extreme regimes for structural materials (pressure drops, high temperatures, unsteady heating), identifying the limiting factors under specific operating conditions, and saving on costly experiments (especially in deuterium-tritium investigations).

  6. Dyachenko E.N., Dueck J.G.
    Modeling of sedimentation and filtration layer formation by discrete element method
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 105-120

    The numerical model of sedimentation and suspension filtration is proposed in this paper. The model is based on dynamic variant of discrete element method. This model represents the particles behavior on microand meso-scales: pores, arches, flocks formation. In addition, the proposed model qualitatively reproduces macro phenomenon: sedimentation of particle layer, slow shrinkage of the layer, sealing of the layer under its own weight of the particles and the external applied force.

    Views (last year): 1. Citations: 2 (RSCI).
  7. Krektuleva R.A., Cherepanov O.I., Cherepanov R.O.
    Numerical solution of a two-dimensional quasi-static problem of thermoplasticity: residual thermal stress calculation for a multipass welding of heterogeneous steels
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 345-356

    A two-dimensional mathematical model was developed for estimating the stresses in welded joints formed during multipass welding of multilayer steels. The basis of the model is the system of equations that includes the Lagrange variational equation of incremental plasticity theory and the variational equation of heat conduction, which expresses the principle of M. Biot. Variational-difference method was used to solve the problems of heat conductivity and calculation of the transient temperature field, and then at each time step – for the quasi-static problem of thermoplasticity. The numerical scheme is based on triangular meshes, which gives a more accuracy in describing the boundaries of structural elements as compared to rectangular grids.

    Views (last year): 4. Citations: 6 (RSCI).
  8. Ivanov S.I., Matasov A.V., Menshutina N.V.
    Deformation model of polymer nanocomposites based on cellular automata
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 131-136

    This paper discusses the modeling of the deformation of polymer nanocomposites containing "hard" and "soft" inclusions, using cellular automata and parallel computing. The paper describes an algorithm based on the model, a comparison with experimental data is shown, software for the numerical experiment is described.

    Views (last year): 3. Citations: 2 (RSCI).
  9. Zaika Y.V., Rodchenkova N.I., Sidorov N.I.
    Modeling of H2-permeability of alloys for gas separation membranes
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 121-135

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. A considerable part of hydrogen is to be obtained by methane conversion. Different alloys, which may be wellsuited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear model of hydrogen permeability in accordance with the specifics of the experiment, the numerical method for solving the boundary-value problem, and the results of parametric identification for the alloy V85Ni15.

    Views (last year): 1. Citations: 7 (RSCI).
  10. Aksenov A.A., Zhluktov S.V., Shmelev V.V., Shaporenko E.V., Shepelev S.F., Rogozhkin S.A., Krylov A.N.
    Numerical investigations of mixing non-isothermal streams of sodium coolant in T-branch
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 95-110

    Numerical investigation of mixing non-isothermal streams of sodium coolant in a T-branch is carried out in the FlowVision CFD software. This study is aimed at argumentation of applicability of different approaches to prediction of oscillating behavior of the flow in the mixing zone and simulation of temperature pulsations. The following approaches are considered: URANS (Unsteady Reynolds Averaged Navier Stokers), LES (Large Eddy Simulation) and quasi-DNS (Direct Numerical Simulation). One of the main tasks of the work is detection of the advantages and drawbacks of the aforementioned approaches.

    Numerical investigation of temperature pulsations, arising in the liquid and T-branch walls from the mixing of non-isothermal streams of sodium coolant was carried out within a mathematical model assuming that the flow is turbulent, the fluid density does not depend on pressure, and that heat exchange proceeds between the coolant and T-branch walls. Model LMS designed for modeling turbulent heat transfer was used in the calculations within URANS approach. The model allows calculation of the Prandtl number distribution over the computational domain.

    Preliminary study was dedicated to estimation of the influence of computational grid on the development of oscillating flow and character of temperature pulsation within the aforementioned approaches. The study resulted in formulation of criteria for grid generation for each approach.

    Then, calculations of three flow regimes have been carried out. The regimes differ by the ratios of the sodium mass flow rates and temperatures at the T-branch inlets. Each regime was calculated with use of the URANS, LES and quasi-DNS approaches.

    At the final stage of the work analytical comparison of numerical and experimental data was performed. Advantages and drawbacks of each approach to simulation of mixing non-isothermal streams of sodium coolant in the T-branch are revealed and formulated.

    It is shown that the URANS approach predicts the mean temperature distribution with a reasonable accuracy. It requires essentially less computational and time resources compared to the LES and DNS approaches. The drawback of this approach is that it does not reproduce pulsations of velocity, pressure and temperature.

    The LES and DNS approaches also predict the mean temperature with a reasonable accuracy. They provide oscillating solutions. The obtained amplitudes of the temperature pulsations exceed the experimental ones. The spectral power densities in the check points inside the sodium flow agree well with the experimental data. However, the expenses of the computational and time resources essentially exceed those for the URANS approach in the performed numerical experiments: 350 times for LES and 1500 times for ·DNS.

    Views (last year): 3.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"