Результаты поиска по 'numerical research':
Найдено статей: 56
  1. Bashashin M.V., Zemlyanay E.V., Rahmonov I.R., Shukrinov J.M., Atanasova P.C., Volokhova A.V.
    Numerical approach and parallel implementation for computer simulation of stacked long Josephson Junctions
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 593-604

    We consider a model of stacked long Josephson junctions (LJJ), which consists of alternating superconducting and dielectric layers. The model takes into account the inductive and capacitive coupling between the neighbor junctions. The model is described by a system of nonlinear partial differential equations with respect to the phase differences and the voltage of LJJ, with appropriate initial and boundary conditions. The numerical solution of this system of equations is based on the use of standard three-point finite-difference formulae for discrete approximations in the space coordinate, and the applying the four-step Runge-Kutta method for solving the Cauchy problem obtained. Designed parallel algorithm is implemented by means of the MPI technology (Message Passing Interface). In the paper, the mathematical formulation of the problem is given, numerical scheme and a method of calculation of the current-voltage characteristics of the LJJ system are described. Two variants of parallel implementation are presented. The influence of inductive and capacitive coupling between junctions on the structure of the current-voltage characteristics is demonstrated. The results of methodical calculations with various parameters of length and number of Josephson junctions in the LJJ stack depending on the number of parallel computing nodes, are presented. The calculations have been performed on multiprocessor clusters HybriLIT and CICC of Multi-Functional Information and Computing Complex (Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna). The numerical results are discussed from the viewpoint of the effectiveness of presented approaches of the LJJ system numerical simulation in parallel. It has been shown that one of parallel algorithms provides the 9 times speedup of calculations.

    Views (last year): 7. Citations: 6 (RSCI).
  2. Lobanov A.I.
    Scientific and pedagogical schools founded by A. S. Kholodov
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579

    In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.

    The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.

    This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.

    On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).

    There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.

    The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.

    Views (last year): 42.
  3. The 3rd BRICS Mathematics Conference
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016
  4. Fomin A.A., Fomina L.N.
    The implicit line-by-line recurrence method in application to the solution of problems of incompressible viscous fluid dynamics
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 35-50

    In the paper the results of applying the implicit line-by-line recurrence method for solving of systems of elliptic difference equations, arising, in particular, at numerical simulation of dynamics of incompressible viscous fluid are considered. Research is conducted on the example of the problem about a steady-state two-dimensional lid-driven cavity flow formulated in primitive variables ($u,\, v,\, p$) for large Re (up to 20 000) and grids (up to 2049×2049). High efficiency of the method at calculation of a pressure correction fields is demonstrated. The difficulties of constructing a solution of the problem for large Rе are analyzed.

    Views (last year): 3. Citations: 3 (RSCI).
  5. Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.

    Views (last year): 9. Citations: 1 (RSCI).
  6. Matyushkin I.V., Zapletina M.A.
    Computer research of the holomorphic dynamics of exponential and linear-exponential maps
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 383-405

    The work belongs to the direction of experimental mathematics, which investigates the properties of mathematical objects by the computing facilities of a computer. The base is an exponential map, its topological properties (Cantor's bouquets) differ from properties of polynomial and rational complex-valued functions. The subject of the study are the character and features of the Fatou and Julia sets, as well as the equilibrium points and orbits of the zero of three iterated complex-valued mappings: $f:z \to (1+ \mu) \exp (iz)$, $g : z \to \big(1+ \mu |z - z^*|\big) \exp (iz)$, $h : z \to \big(1+ \mu (z - z^* )\big) \exp (iz)$, with $z,\mu \in \mathbb{C}$, $z^* : \exp (iz^*) = z^*$. For a quasilinear map g having no analyticity characteristic, two bifurcation transitions were discovered: the creation of a new equilibrium point (for which the critical value of the linear parameter was found and the bifurcation consists of “fork” type and “saddle”-node transition) and the transition to the radical transformation of the Fatou set. A nontrivial character of convergence to a fixed point is revealed, which is associated with the appearance of “valleys” on the graph of convergence rates. For two other maps, the monoperiodicity of regimes is significant, the phenomenon of “period doubling” is noted (in one case along the path $39\to 3$, in the other along the path $17\to 2$), and the coincidence of the period multiplicity and the number of sleeves of the Julia spiral in a neighborhood of a fixed point is found. A rich illustrative material, numerical results of experiments and summary tables reflecting the parametric dependence of maps are given. Some questions are formulated in the paper for further research using traditional mathematics methods.

    Views (last year): 51. Citations: 1 (RSCI).
  7. Polosin V.G.
    Quantile shape measures for heavy-tailed distributions
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1041-1077

    Currently, journal papers contain numerous examples of the use of heavy-tailed distributions for applied research on various complex systems. Models of extreme data are usually limited to a small set of distribution shapes that in this field of applied research historically been used. It is possible to increase the composition of the set of probability distributions shapes through comparing the measures of the distribution shapes and choosing the most suitable implementations. The example of a beta distribution of the second kind shown that the lack of definability of the moments of heavy-tailed implementations of the beta family of distributions limits the applicability of the existing classical methods of moments for studying the distributions shapes when are characterized heavy tails. For this reason, the development of new methods for comparing distributions based on quantile shape measures free from the restrictions on the shape parameters remains relevant study the possibility of constructing a space of quantile measures of shapes for comparing distributions with heavy tails. The operation purpose consists in computer research of creation possibility of space of the quantile’s measures for the comparing of distributions property with heavy tails. On the basis of computer simulation there the distributions implementations in measures space of shapes were been shown. Mapping distributions in space only of the parametrical measures of shapes has shown that the imposition of regions for heavy tails distribution made impossible compare the shape of distributions belonging to different type in the space of quantile measures of skewness and kurtosis. It is well known that shape information measures such as entropy and entropy uncertainty interval contain additional information about the shape measure of heavy-tailed distributions. In this paper, a quantile entropy coefficient is proposed as an additional independent measure of shape, which is based on the ratio of entropy and quantile uncertainty intervals. Also estimates of quantile entropy coefficients are obtained for a number of well-known heavy-tailed distributions. The possibility of comparing the distributions shapes with realizations of the beta distribution of the second kind is illustrated by the example of the lognormal distribution and the Pareto distribution. Due to mapping the position of stable distributions in the three-dimensional space of quantile measures of shapes estimate made it possible the shape parameters to of the beta distribution of the second kind, for which shape is closest to the Lévy shape. From the paper material it follows that the display of distributions in the three-dimensional space of quantile measures of the forms of skewness, kurtosis and entropy coefficient significantly expands the possibility of comparing the forms for distributions with heavy tails.

  8. Pechenyuk A.V.
    Benchmarking of CEA FlowVision in ship flow simulation
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 889-899

    In the field of naval architecture the most competent recommendations in verification and validation of the numerical methods were developed within an international workshop on the numerical prediction of ship viscous flow which is held every five years in Gothenburg (Sweden) and Tokyo (Japan) alternately. In the workshop “Gothenburg–2000” three modern hull forms with reliable experimental data were introduced as test cases. The most general case among them is a containership KCS, a ship of moderate specific speed and fullness. The paper focuses on a numerical research of KCS hull flow, which was made according to the formal procedures of the workshop with the help of CEA FlowVision. Findings were compared with experimental data and computational data of other key CEA.

    Views (last year): 1. Citations: 5 (RSCI).
  9. Smirnova O., Kónya B., Cameron D., Nilsen J.K., Filipčič A.
    ARC-CE: updates and plans
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 407-414

    ARC Compute Element is becoming more popular in WLCG and EGI infrastructures, being used not only in the Grid context, but also as an interface to HPC and Cloud resources. It strongly relies on community contributions, which helps keeping up with the changes in the distributed computing landscape. Future ARC plans are closely linked to the needs of the LHC computing, whichever shape it may take. There are also numerous examples of ARC usage for smaller research communities through national computing infrastructure projects in different countries. As such, ARC is a viable solution for building uniform distributed computing infrastructures using a variety of resources.

  10. Lobanov A.I.
    Finite difference schemes for linear advection equation solving under generalized approximation condition
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 181-193

    A set of implicit difference schemes on the five-pointwise stensil is under construction. The analysis of properties of difference schemes is carried out in a space of undetermined coefficients. The spaces were introduced for the first time by A. S. Kholodov. Usually for properties of difference schemes investigation the problem of the linear programming was constructed. The coefficient at the main term of a discrepancy was considered as the target function. The optimization task with inequalities type restrictions was considered for construction of the monotonic difference schemes. The limitation of such an approach becomes clear taking into account that approximation of the difference scheme is defined only on the classical (smooth) solutions of partial differential equations.

    The functional which minimum will be found put in compliance to the difference scheme. The functional must be the linear on the difference schemes coefficients. It is possible that the functional depends on net function – the solution of a difference task or a grid projection of the differential problem solution. If the initial terms of the functional expansion in a Taylor series on grid parameters are equal to conditions of classical approximation, we will call that the functional will be the generalized condition of approximation. It is shown that such functionals exist. For the simple linear partial differential equation with constant coefficients construction of the functional is possible also for the generalized (non-smooth) solution of a differential problem.

    Families of functionals both for smooth solutions of an initial differential problem and for the generalized solution are constructed. The new difference schemes based on the analysis of the functionals by linear programming methods are constructed. At the same time the research of couple of self-dual problems of the linear programming is used. The optimum monotonic difference scheme possessing the first order of approximation on the smooth solution of differential problem is found. The possibility of application of the new schemes for creation of hybrid difference methods of the raised approximation order on smooth solutions is discussed.

    The example of numerical implementation of the simplest difference scheme with the generalized approximation is given.

    Views (last year): 27.
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"