Результаты поиска по 'object with control system':
Найдено статей: 18
  1. Chukanov S.N., Pershina E.L.
    Formation of optimal control of nonlinear dynamic object based on Takagi–Sugeno model
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 51-59

    The algorithm of fuzzy control system essentially nonlinear dynamic object is considered in this article. For solving nonlinear optimal control problem is proposed to use the method of linear quadratic regulation (LQR) with fuzzy Takagi–Sugeno model. The algorithm can be used for the design of deterministic optimal control of nonlinear objects. The algorithm of optimal control for controlling the rotational motion of a space vehicle is proposed.

    Views (last year): 2.
  2. Vlasov A.A., Pilgeikina I.A., Skorikova I.A.
    Method of forming multiprogram control of an isolated intersection
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 295-303

    The simplest and most desirable method of traffic signal control is precalculated regulation, when the parameters of the traffic light object operation are calculated in advance and activated in accordance to a schedule. This work proposes a method of forming a signal plan that allows one to calculate the control programs and set the period of their activity. Preparation of initial data for the calculation includes the formation of a time series of daily traffic intensity with an interval of 15 minutes. When carrying out field studies, it is possible that part of the traffic intensity measurements is missing. To fill up the missing traffic intensity measurements, the spline interpolation method is used. The next step of the method is to calculate the daily set of signal plans. The work presents the interdependencies, which allow one to calculate the optimal durations of the control cycle and the permitting phase movement and to set the period of their activity. The present movement control systems have a limit on the number of control programs. To reduce the signal plans' number and to determine their activity period, the clusterization using the $k$-means method in the transport phase space is introduced In the new daily signal plan, the duration of the phases is determined by the coordinates of the received cluster centers, and the activity periods are set by the elements included in the cluster. Testing on a numerical illustration showed that, when the number of clusters is 10, the deviation of the optimal phase duration from the cluster centers does not exceed 2 seconds. To evaluate the effectiveness of the developed methodology, a real intersection with traffic light regulation was considered as an example. Based on field studies of traffic patterns and traffic demand, a microscopic model for the SUMO (Simulation of Urban Mobility) program was developed. The efficiency assessment is based on the transport losses estimated by the time spent on movement. Simulation modeling of the multiprogram control of traffic lights showed a 20% reduction in the delay time at the traffic light object in comparison with the single-program control. The proposed method allows automation of the process of calculating daily signal plans and setting the time of their activity.

  3. Chukanov S.N.
    Comparison of complex dynamical systems based on topological data analysis
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 513-525

    The paper considers the possibility of comparing and classifying dynamical systems based on topological data analysis. Determining the measures of interaction between the channels of dynamic systems based on the HIIA (Hankel Interaction Index Array) and PM (Participation Matrix) methods allows you to build HIIA and PM graphs and their adjacency matrices. For any linear dynamic system, an approximating directed graph can be constructed, the vertices of which correspond to the components of the state vector of the dynamic system, and the arcs correspond to the measures of mutual influence of the components of the state vector. Building a measure of distance (proximity) between graphs of different dynamic systems is important, for example, for identifying normal operation or failures of a dynamic system or a control system. To compare and classify dynamic systems, weighted directed graphs corresponding to dynamic systems are preliminarily formed with edge weights corresponding to the measures of interaction between the channels of the dynamic system. Based on the HIIA and PM methods, matrices of measures of interaction between the channels of dynamic systems are determined. The paper gives examples of the formation of weighted directed graphs for various dynamic systems and estimation of the distance between these systems based on topological data analysis. An example of the formation of a weighted directed graph for a dynamic system corresponding to the control system for the components of the angular velocity vector of an aircraft, which is considered as a rigid body with principal moments of inertia, is given. The method of topological data analysis used in this work to estimate the distance between the structures of dynamic systems is based on the formation of persistent barcodes and persistent landscape functions. Methods for comparing dynamic systems based on topological data analysis can be used in the classification of dynamic systems and control systems. The use of traditional algebraic topology for the analysis of objects does not allow obtaining a sufficient amount of information due to a decrease in the data dimension (due to the loss of geometric information). Methods of topological data analysis provide a balance between reducing the data dimension and characterizing the internal structure of an object. In this paper, topological data analysis methods are used, based on the use of Vietoris-Rips and Dowker filtering to assign a geometric dimension to each topological feature. Persistent landscape functions are used to map the persistent diagrams of the method of topological data analysis into the Hilbert space and then quantify the comparison of dynamic systems. Based on the construction of persistent landscape functions, we propose a comparison of graphs of dynamical systems and finding distances between dynamical systems. For this purpose, weighted directed graphs corresponding to dynamical systems are preliminarily formed. Examples of finding the distance between objects (dynamic systems) are given.

  4. Ushakov A.O., Gandzha T.V., Dmitriev V.M., Molokov P.B.
    Computer model of a perfect-mixing extraction reactor in the format of the component circuits method with non-uniform vector connections
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 599-614

    The features of the component circuits method (MCC) in modeling chemical-technological systems (CTS) are considered, taking into account its practical significance. The software and algorithmic implementation of which is currently a set of computer modeling programs MARS (Modeling and Automatic Research of Systems). MARS allows the development and analysis of mathematical models with specified experimental parameters. Research and calculations were carried out using a specialized software and hardware complex MARS, which allows the development of mathematical models with specified experimental parameters. In the course of this work, the model of a perfect-mixing reactor was developed in the MARS modeling environment taking into account the physicochemical features of the uranium extraction process in the presence of nitric acid and tributyl phosphate. As results, the curves of changes of the concentration of uranium extracted into the organic phase are presented. The possibility of using MCC for the description and analysis of CTS, including extraction processes, has been confirmed. The use of the obtained results is planned to be used in the development of a virtual laboratory, which will include the main apparatus of the chemical industry, as well as complex technical controlled systems (CTСS) based on them and will allow one to acquire a wide range of professional competencies in working with “digital twins” of real control objects, including gaining initial experience working with the main equipment of the nuclear industry. In addition to the direct applied benefits, it is also assumed that the successful implementation of the domestic complex of computer modeling programs and technologies based on the obtained results will make it possible to find solutions to the problems of organizing national technological sovereignty and import substitution.

  5. Soukhovolsky V.G., Kovalev A.V., Palnikova E.N., Tarasova O.V.
    Modelling the risk of insect impacts on forest stands after possible climate changes
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 241-253

    A model of forest insect population dynamics used to simulate of “forest-insect” interactions and for estimation of possible damages of forest stand by pests. This model represented a population as control system where the input variables characterized the influence of modifier (climatic) factors and the feedback loop describes the effect of regulatory factors (parasites, predators and population interactions). The technique of stress testing on the basis of population dynamics model proposed for assessment of the risks of forest stand damage and destruction after insect impact. The dangerous forest pest pine looper Bupalus piniarius L. considered as the object of analysis. Computer experiments were conducted to assess of outbreak risks with possible climate change in the territory of Central Siberia. Model experiments have shown that risk of insect impact on the forest is not increased significantly in condition of sufficiently moderate warming (not more than 4 °C in summer period). However, a stronger warming in the territory of Central Siberia, combined with a dry summer condition could cause a significant increase in the risk of pine looper outbreaks.

    Views (last year): 3. Citations: 1 (RSCI).
  6. Zatserkovnyy A.V., Nurminski E.A.
    Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318

    Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.

  7. Babakov A.V., Chechetkin V.M.
    Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643

    The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.

    Views (last year): 27.
  8. Klekovkin A.V., Karavaev Y.L., Kilin A.A., Nazarov A.V.
    The influence of tail fins on the speed of an aquatic robot driven by internal moving masses
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 869-882

    This paper describes the design of an aquatic robot moving on the surface of a fluid and driven by two internal moving masses. The body of the aquatic robot in cross section has the shape of a symmetrical airfoil with a sharp edge. In this prototype, two internal masses move in circles and are rotated by a single DC motor and a gear mechanism that transmits torque from the motor to each mass. Angular velocities of moving masses are used as a control action, and the developed kinematic scheme for transmitting rotation from the motor to the moving masses allows the rotation of two masses with equal angular velocities in magnitude, but with a different direction of rotation. It is also possible to install additional tail fins of various shapes and sizes on the body of this robot. Also in the work for this object, the equations of motion are presented, written in the form of Kirchhoff equations for the motion of a solid body in an ideal fluid, which are supplemented by terms of viscous resistance. A mathematical description of the additional forces acting on the flexible tail fin is presented. Experimental studies on the influence of various tail fins on the speed of motion in the fluid were carried out with the developed prototype of the robot. In this work, tail fins of the same shape and size were installed on the robot, while having different stiffness. The experiments were carried out in a pool with water, over which a camera was installed, on which video recordings of all the experiments were obtained. Next processing of the video recordings made it possible to obtain the object’s movements coordinates, as well as its linear and angular velocities. The paper shows the difference in the velocities developed by the robot when moving without a tail fin, as well as with tail fins having different stiffness. The comparison of the velocities developed by the robot, obtained in experimental studies, with the results of mathematical modeling of the system is given.

  9. Shumixin A.G., Aleksandrova A.S.
    Identification of a controlled object using frequency responses obtained from a dynamic neural network model of a control system
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 729-740

    We present results of a study aimed at identification of a controlled object’s channels based on postprocessing of measurements with development of a model of a multiple-input controlled object and subsequent active modelling experiment. The controlled object model is developed using approximation of its behavior by a neural network model using trends obtained during a passive experiment in the mode of normal operation. Recurrent neural network containing feedback elements allows to simulate behavior of dynamic objects; input and feedback time delays allow to simulate behavior of inertial objects with pure delay. The model was taught using examples of the object’s operation with a control system and is presented by a dynamic neural network and a model of a regulator with a known regulation function. The neural network model simulates the system’s behavior and is used to conduct active computing experiments. Neural network model allows to obtain the controlled object’s response to an exploratory stimulus, including a periodic one. The obtained complex frequency response is used to evaluate parameters of the object’s transfer system using the least squares method. We present an example of identification of a channel of the simulated control system. The simulated object has two input ports and one output port and varying transport delays in transfer channels. One of the input ports serves as a controlling stimulus, the second is a controlled perturbation. The controlled output value changes as a result of control stimulus produced by the regulator operating according to the proportional-integral regulation law based on deviation of the controlled value from the task. The obtained parameters of the object’s channels’ transfer functions are close to the parameters of the input simulated object. The obtained normalized error of the reaction for a single step-wise stimulus of the control system model developed based on identification of the simulated control system doesn’t exceed 0.08. The considered objects pertain to the class of technological processes with continuous production. Such objects are characteristic of chemical, metallurgic, mine-mill, pulp and paper, and other industries.

    Views (last year): 10.
  10. Kazorin V.I., Kholodov Y.A.
    Framework sumo-atclib for adaptive traffic control modeling
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 69-78

    This article proposes the sumo-atclib framework, which provides a convenient uniform interface for testing adaptive control algorithms with different limitations, for example, restrictions on phase durations, phase sequences, restrictions on the minimum time between control actions, which uses the open source microscopic transport modeling environment SUMO. The framework shares the functionality of controllers (class TrafficController) and a monitoring and detection system (class StateObserver), which repeats the architecture of real traffic light objects and adaptive control systems and simplifies the testing of new algorithms, since combinations of different controllers and vehicle detection systems can be freely varied. Also, unlike most existing solutions, the road class Road has been added, which combines a set of lanes, this allows, for example, to determine the adjacency of regulated intersections, in cases when the number of lanes changes on the way from one intersection to another, and therefore the road graph is divided into several edges. At the same time, the algorithms themselves use the same interface and are abstracted from the specific parameters of the detectors, network topologies, that is, it is assumed that this solution will allow the transport engineer to test ready-made algorithms for a new scenario, without the need to adapt them to new conditions, which speeds up the development process of the control system, and reduces design overhead. At the moment, the package contains examples of MaxPressure algorithms and the Q-learning reinforcement learning method, the database of examples is also being updated. The framework also includes a set of SUMO scripts for testing algorithms, which includes both synthetic maps and well-verified SUMO scripts such as Cologne and Ingolstadt. In addition, the framework provides a set of automatically calculated metrics, such as total travel time, delay time, average speed; the framework also provides a ready-made example for visualization of metrics.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"