Результаты поиска по 'spatial models':
Найдено статей: 91
  1. Simakov S.S.
    Modern methods of mathematical modeling of blood flow using reduced order methods
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 581-604

    The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiac cycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models. Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network. The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier – Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model’s validation, to the comparing different 1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy. It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.

    Views (last year): 62. Citations: 2 (RSCI).
  2. In the last decades, universal scenarios of the transition to chaos in dynamic systems have been well studied. The scenario of the transition to chaos is defined as a sequence of bifurcations that occur in the system under the variation one of the governing parameters and lead to a qualitative change in dynamics, starting from the regular mode and ending with chaotic behavior. Typical scenarios include a cascade of period doubling bifurcations (Feigenbaum scenario), the breakup of a low-dimensional torus (Ruelle–Takens scenario), and the transition to chaos through the intermittency (Pomeau–Manneville scenario). In more complicated spatially distributed dynamic systems, the complexity of dynamic behavior growing with a parameter change is closely intertwined with the formation of spatial structures. However, the question of whether the spatial and temporal axes could completely exchange roles in some scenario still remains open. In this paper, for the first time, we propose a mathematical model of convection–diffusion–reaction, in which a spatial transition to chaos through the breakup of the quasi–periodic regime is realized in the framework of the Ruelle–Takens scenario. The physical system under consideration consists of two aqueous solutions of acid (A) and base (B), initially separated in space and placed in a vertically oriented Hele–Shaw cell subject to the gravity field. When the solutions are brought into contact, the frontal neutralization reaction of the second order A + B $\to$ C begins, which is accompanied by the production of salt (C). The process is characterized by a strong dependence of the diffusion coefficients of the reagents on their concentration, which leads to the appearance of two local zones of reduced density, in which chemoconvective fluid motions develop independently. Although the layers, in which convection develops, all the time remain separated by the interlayer of motionless fluid, they can influence each other via a diffusion of reagents through this interlayer. The emerging chemoconvective structure is the modulated standing wave that gradually breaks down over time, repeating the sequence of the bifurcation chain of the Ruelle–Takens scenario. We show that during the evolution of the system one of the spatial axes, directed along the reaction front, plays the role of time, and time itself starts to play the role of a control parameter.

  3. Verichev N.N., Verichev S.N., Erofeev V.I.
    Stationary states and bifurcations in a one-dimensional active medium of oscillators
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 491-512

    This article presents the results of an analytical and computer study of the collective dynamic properties of a chain of self-oscillating systems (conditionally — oscillators). It is assumed that the couplings of individual elements of the chain are non-reciprocal, unidirectional. More precisely, it is assumed that each element of the chain is under the influence of the previous one, while the reverse reaction is absent (physically insignificant). This is the main feature of the chain. This system can be interpreted as an active discrete medium with unidirectional transfer, in particular, the transfer of a matter. Such chains can represent mathematical models of real systems having a lattice structure that occur in various fields of natural science and technology: physics, chemistry, biology, radio engineering, economics, etc. They can also represent models of technological and computational processes. Nonlinear self-oscillating systems (conditionally, oscillators) with a wide “spectrum” of potentially possible individual self-oscillations, from periodic to chaotic, were chosen as the “elements” of the lattice. This allows one to explore various dynamic modes of the chain from regular to chaotic, changing the parameters of the elements and not changing the nature of the elements themselves. The joint application of qualitative methods of the theory of dynamical systems and qualitative-numerical methods allows one to obtain a clear picture of all possible dynamic regimes of the chain. The conditions for the existence and stability of spatially-homogeneous dynamic regimes (deterministic and chaotic) of the chain are studied. The analytical results are illustrated by a numerical experiment. The dynamical regimes of the chain are studied under perturbations of parameters at its boundary. The possibility of controlling the dynamic regimes of the chain by turning on the necessary perturbation at the boundary is shown. Various cases of the dynamics of chains comprised of inhomogeneous (different in their parameters) elements are considered. The global chaotic synchronization (of all oscillators in the chain) is studied analytically and numerically.

  4. Kuznetsov M.B., Polezhaev A.A.
    The mechanism of formation of oscillons — localized oscillatory structures
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1177-1184

    A formal model mechanism of oscillon formation is proposed. These structures were found in a variety of physical systems and a chemical Belousov–Jabotinsky reaction proceeding in an aerosol OT water-inoil microemulsion. Via the proposed mechanism oscillons occur as a result of interaction of two subsystems. In the first subsystem for a proper set of parameters solitary stationary structures may arise as a result of hard local excitation. These structures influence spatial distribution of the second subsystem parameter that leads to local oscillations in the subsystem.

    Views (last year): 6. Citations: 1 (RSCI).
  5. Muhartova Ju.V., Mangura P.A., Levashova N.T., Olchev A.V.
    Selection of boundary conditions for modeling the turbulent exchange processes within the atmospheric surface layer
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 27-46

    One- and two-dimensional hydrodynamic models of turbulent transfer within the atmospheric surface layer under neutral thermal stratification are considered. Both models are based on the solution of system of the timeaveraged equations of Navier – Stokes and continuity using a 1.5-order closure scheme as well as equations for turbulent kinetic energy and the rate of its dissipation. The influence of the upper and lower boundary conditions on vertical profiles of wind speed and turbulence parameters within the atmospheric surface layer was derived using an one-dimensional model usually applied in case of an uniform ground surface. The boundary conditions in the model were prescribed in such way that the vertical wind and turbulence patterns were well agreed with widely used logarithmic vertical profile of wind speed, linear dependence of turbulent exchange coefficient on height above ground surface level and constancy of turbulent kinetic energy within the atmospheric surface layer under neutral atmospheric conditions. On the basis of the classical one-dimensional model it is possible to obtain a number of relationships which link the vertical wind speed gradient, turbulent kinetic energy and the rate of its dissipation. Each of these relationships can be used as a boundary condition in our hydrodynamic model. The boundary conditions for the wind speed and the rate of dissipation of turbulent kinetic energy were selected as parameters to provide the smallest deviations of model calculations from classical distributions of wind and turbulence parameters. The corresponding upper and lower boundary conditions were used to define the initial and boundary value problem in the two-dimensional hydrodynamic model allowing to consider complex topography and horizontal vegetation heterogeneity. The two-dimensional model with selected optimal boundary conditions was used to describe the spatial pattern of turbulent air flow when it interacted with the forest edge. The dynamics of the air flow establishment depending on the distance from the forest edge was analyzed. For all considered initial and boundary value problems the unconditionally stable implicit finite-difference schemes of their numerical solution were developed and implemented.

    Views (last year): 19.
  6. Babakov A.V.
    Simulation of unsteady structure of flow over descent module in the Martian atmosphere conditions
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 701-714

    The article presents the results of numerical modeling of the vortex spatial non-stationary motion of the medium arising near the lateral and bottom surfaces of the descent module during its movement in the atmosphere of Mars. The numerical study was performed for the high-speed streamline regime at various angles of attack. Mathematical modeling was carried out on the basis of the Navier – Stokes model and the model of equilibrium chemical reactions for the Martian atmosphere gas. The simulation results showed that under the considered conditions of the descent module motion, a non-stationary flow with a pronounced vortex character is realized near its lateral and bottom surfaces. Numerical calculations indicate that, depending on the angle of attack, the nonstationarity and vortex nature of the flow can manifest itself both on the entire lateral and bottom surfaces of the module, and, partially, on their leeward side. For various angles of attack, pictures of the vortex structure of the flow near the surface of the descent vehicle and in its near wake are presented, as well as pictures of the gas-dynamic parameters fields. The non-stationary nature of the flow is confirmed by the presented time dependences of the gas-dynamic parameters of the flow at various points on the module surface. The carried out parametric calculations made it possible to determine the dependence of the aerodynamic characteristics of the descent module on the angle of attack. Mathematical modeling is carried out on the basis of the conservative numerical method of fluxes, which is a finitevolume method based on a finite-difference writing of the conservation laws of additive characteristics of the medium using «upwind» approximations of stream variables. To simulate the complex vortex structure of the flow over descent module, the nonuniform computational grids are used, including up to 30 million finite volumes with exponential thickening to the surface, which made it possible to reveal small-scale vortex formations. Numerical investigations were carried out on the basis of the developed software package based on parallel algorithms of the used numerical method and implemented on modern multiprocessor computer systems. The results of numerical simulation presented in the article were obtained using up to two thousand computing cores of a multiprocessor complex.

  7. The work is devoted to numerical modeling of two-phase flows, namely, the calculation of supersonic flow around a blunt body by a viscous gas flow with an admixture of large high inertia particles. The system of unsteady Navier – Stokes equations is numerically solved by the meshless method. It uses the cloud of points in space to represent the fields of gas parameters. The spatial derivatives of gas parameters and functions are approximated by the least square method to calculate convective and viscous fluxes in the Navier – Stokes system of equations. The convective fluxes are calculated by the HLLC method. The third-order MUSCL reconstruction scheme is used to achieve high order accuracy. The viscous fluxes are calculated by the second order approximation scheme. The streamlined body surface is represented by a model of an isothermal wall. It implements the conditions for the zero velocity and zero pressure gradient, which is also modeled using the least squares method.

    Every moving body is surrounded by its own cloud of points belongs to body’s domain and moving along with it in space. The explicit three-sage Runge–Kutta method is used to solve numerically the system of gas dynamics equations in the main coordinate system and local coordinate systems of each particle.

    Two methods for the moving objects modeling with reverse impact on the gas flow have been implemented. The first one uses stationary point clouds with fixed neighbors within the same domain. When regions overlap, some nodes of one domain, for example, the boundary nodes of the particle domain, are excluded from the calculation and filled with the values of gas parameters from the nearest nodes of another domain using the least squares approximation of gradients. The internal nodes of the particle domain are used to reconstruct the gas parameters in the overlapped nodes of the main domain. The second method also uses the exclusion of nodes in overlapping areas, but in this case the nodes of another domain take the place of the excluded neighbors to build a single connected cloud of nodes. At the same time, some of the nodes are moving, and some are stationary. Nodes membership to different domains and their relative speed are taken into account when calculating fluxes.

    The results of modeling the motion of a particle in a stationary gas and the flow around a stationary particle by an incoming flow at the same relative velocity show good agreement for both presented methods.

  8. Chernov I.A., Manicheva S.V.
    Adjoint grid parabolic quazilinear boundary-value problems
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 275-291

    In the paper we construct the adjoint problem for the explicit and implicit parabolic quazi-linear grid boundary-value problems with one spatial variable; the coefficients of the problems depend on the solution at the same time and earlier times. Dependence on the history of the solution is via the state vector; its evolution is described by the differential equation. Many models of diffusion mass transport are reduced to such boundary-value problems. Having solutions to the direct and adjoint problems, one can obtain the exact value of the gradient of a functional in the space of parameters the problem also depends on. We present solving algorithms, including the parallel one.

    Views (last year): 1.
  9. Khazova Y.A.
    Traveling waves in a parabolic problem with a rotation on the circle
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 705-716

    Optical systems with two-dimensional feedback demonstrate wide possibilities for studying the nucleation and development processes of dissipative structures. Feedback allows to influence the dynamics of the optical system by controlling the transformation of spatial variables performed by prisms, lenses, dynamic holograms and other devices. A nonlinear interferometer with a mirror image of a field in two-dimensional feedback is one of the simplest optical systems in which is realized the nonlocal nature of light fields.

    A mathematical model of optical systems with two-dimensional feedback is a nonlinear parabolic equation with rotation transformation of a spatial variable and periodicity conditions on a circle. Such problems are investigated: bifurcation of the traveling wave type stationary structures, how the form of the solution changes as the diffusion coefficient decreases, dynamics of the solution’s stability when the bifurcation parameter leaves the critical value. For the first time as a parameter bifurcation was taken of diffusion coefficient.

    The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds allows to prove a theorem on the existence and form of the traveling wave type solution neighborhood of the bifurcation value. The first traveling wave born as a result of the Andronov –Hopf bifurcation in the transition of the bifurcation parameter through the сritical value. According to the central manifold theorem, the first traveling wave is born orbitally stable.

    Since the above theorem gives the opportunity to explore solutions are born only in the vicinity of the critical values of the bifurcation parameter, the decision to study the dynamics of traveling waves of change during the withdrawal of the bifurcation parameter in the supercritical region, the formalism of the Galerkin method was used. In accordance with the method of the central manifold is made Galerkin’s approximation of the problem solution. As the bifurcation parameter decreases and its transition through the critical value, the zero solution of the problem loses stability in an oscillatory manner. As a result, a periodic solution of the traveling wave type branches off from the zero solution. This wave is born orbitally stable. With further reduction of the parameter and its passage through the next critical value from the zero solution, the second solution of the traveling wave type is produced as a result of the Andronov –Hopf bifurcation. This wave is born unstable with an instability index of two.

    Numerical calculations have shown that the application of the Galerkin’s method leads to correct results. The results obtained are in good agreement with the results obtained by other authors and can be used to establish experiments on the study of phenomena in optical systems with feedback.

    Views (last year): 11. Citations: 5 (RSCI).
  10. Kuznetsov M.B.
    Investigation of Turing structures formation under the influence of wave instability
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 397-412

    A classical for nonlinear dynamics model, Brusselator, is considered, being augmented by addition of a third variable, which plays the role of a fast-diffusing inhibitor. The model is investigated in one-dimensional case in the parametric domain, where two types of diffusive instabilities of system’s homogeneous stationary state are manifested: wave instability, which leads to spontaneous formation of autowaves, and Turing instability, which leads to spontaneous formation of stationary dissipative structures, or Turing structures. It is shown that, due to the subcritical nature of Turing bifurcation, the interaction of two instabilities in this system results in spontaneous formation of stationary dissipative structures already before the passage of Turing bifurcation. In response to different perturbations of spatially uniform stationary state, different stable regimes are manifested in the vicinity of the double bifurcation point in the parametric region under study: both pure regimes, which consist of either stationary or autowave dissipative structures; and mixed regimes, in which different modes dominate in different areas of the computational space. In the considered region of the parametric space, the system is multistable and exhibits high sensitivity to initial noise conditions, which leads to blurring of the boundaries between qualitatively different regimes in the parametric region. At that, even in the area of dominance of mixed modes with prevalence of Turing structures, the establishment of a pure autowave regime has significant probability. In the case of stable mixed regimes, a sufficiently strong local perturbation in the area of the computational space, where autowave mode is manifested, can initiate local formation of new stationary dissipative structures. Local perturbation of the stationary homogeneous state in the parametric region under investidation leads to a qualitatively similar map of established modes, the zone of dominance of pure autowave regimes being expanded with the increase of local perturbation amplitude. In two-dimensional case, mixed regimes turn out to be only transient — upon the appearance of localized Turing structures under the influence of wave regime, they eventually occupy all available space.

    Views (last year): 21.
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"