Результаты поиска по 'the transfer equation':
Найдено статей: 48
  1. Mikhailenko S.A., Sheremet M.A.
    Simulation of convective-radiative heat transfer in a differentially heated rotating cavity
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 195-207

    Mathematical simulation of unsteady natural convection and thermal surface radiation within a rotating square enclosure was performed. The considered domain of interest had two isothermal opposite walls subjected to constant low and high temperatures, while other walls are adiabatic. The walls were diffuse and gray. The considered cavity rotated with constant angular velocity relative to the axis that was perpendicular to the cavity and crossed the cavity in the center. Mathematical model, formulated in dimensionless transformed variables “stream function – vorticity” using the Boussinesq approximation and diathermic approach for the medium, was performed numerically using the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. Radiative heat transfer was analyzed using the net-radiation method in Poljak approach. The developed computational code was tested using the grid independence analysis and experimental and numerical results for the model problem.

    Numerical analysis of unsteady natural convection and thermal surface radiation within the rotating enclosure was performed for the following parameters: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. All distributions were obtained for the twentieth complete revolution when one can find the periodic behavior of flow and heat transfer. As a result we revealed that at low angular velocity the convective flow can intensify but the following growth of angular velocity leads to suppression of the convective flow. The radiative Nusselt number changes weakly with the Taylor number.

    Views (last year): 20.
  2. Nazarov V.G.
    Improvement of image quality in a computer tomography by means of integral transformation of a special kind
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1033-1046

    The question on improvement of quality of images obtained in a tomography problem is considered. The problem consists in finding of boundaries of inhomogeneities (inclusions) in a continuous medium by results of X-ray radiography of this medium. A nonlinear integral transformation of a special kind is proposed which allows to improve quality of images obtained earlier at a set of papers. The method is realized numerically by the use of computer modelling. Some calculations are carried out with use of data for concrete materials. The results obtained are presented by drawings and graphic images.

    Views (last year): 6.
  3. Babakov A.V., Chechetkin V.M.
    Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643

    The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.

    Views (last year): 27.
  4. Loenko D.S., Sheremet M.A.
    Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72

    In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.

    As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.

  5. The paper provides the mathematical and numerical models of the interrelated thermo- and hydrodynamic processes in the operational mode of development the unified oil-producing complex during the hydrogel flooding of the non-uniform oil reservoir exploited with a system of arbitrarily located injecting wells and producing wells equipped with submersible multistage electrical centrifugal pumps. A special feature of our approach is the modeling of the special ground-based equipment operation (control stations of submersible pumps, drossel devices on the head of producing wells), designed to regulate the operation modes of both the whole complex and its individual elements.

    The complete differential model includes equations governing non-stationary two-phase five-component filtration in the reservoir, quasi-stationary heat and mass transfer in the wells and working channels of pumps. Special non-linear boundary conditions and dependencies simulate, respectively, the influence of the drossel diameter on the flow rate and pressure at the wellhead of each producing well and the frequency electric current on the performance characteristics of the submersible pump unit. Oil field development is also regulated by the change in bottom-hole pressure of each injection well, concentration of the gel-forming components pumping into the reservoir, their total volume and duration of injection. The problem is solved numerically using conservative difference schemes constructed on the base of the finite difference method, and developed iterative algorithms oriented on the parallel computing technologies. Numerical model is implemented in a software package which can be considered as the «Intellectual System of Wells» for the virtual control the oil field development.

  6. Prokhorov I.V., Zhuplev A.S.
    On the efficiency of the maximum cross section method in radiation transport theory
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582

    We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.

    Views (last year): 4. Citations: 2 (RSCI).
  7. Topaj A.G., Abramova A.V., Tolstopyatov S.E.
    Discrete Models in Population Dynamics: Advantages, Problems, and Justification
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 267-284

    This article is dedicated to applicability justification as well as advantages and disadvantages analysis of discrete models in population dynamics. Discretization is the process of transferring continuous functions, models, and equations into discrete counterparts. We consider how temporal, spatial and structural discretization can be applied for solving typical issues in mathematical ecology, and try to estimate corresponding models adequacy and applicability limitations.

    Views (last year): 6. Citations: 6 (RSCI).
  8. Astanina M.S., Sheremet M.A.
    Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107

    Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.

    Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.

    Views (last year): 34.
  9. Gasparyan M.M., Samonov A.S., Sazykina T.A., Ostapov E.L., Sakmarov A.V., Shahatarov O.K.
    The Solver of Boltzmann equation on unstructured spatial grids
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447

    The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.

    In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.

    A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.

    The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.

    The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.

    The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.

    Views (last year): 13.
  10. Stognii P.V., Petrov I.B.
    Numerical modelling of seismic waves spread in models with an ice field in the arctic shelf
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 73-82

    The Arctic region contains large hydrocarbon deposits. The presence of different ice formations, such as icebergs, ice hummocks, ice fields, complicates the process of carrying out seismic works on the territory. The last of them, ice fields, bring multiple reflections, spreading all over the surface of ice, into seismogramms. These multiple reflections are necessary to be taken into account while analyzing the seismograms, and geologists should be able to exclude them in order to obtain the reflected waves from the lower geological layers, including hydrocarbon layers.

    In this work, we solve the problem of the seismic waves spread in the heterogeneous medium. The systems of equations for the linear elastic medium and for the acoustic medium describe the geological layers. We present the detailed description of the numerical solution of these systems of equations with the help of the grid-characteristic method. The final 1D transfer equations are solved with the use of the Rusanov scheme of the third order of accuracy. In the work, we examine the way of multiple waves decrease in ice by establishing the source of impulse deep into the ice field on border with water. We present the results of computer modelling of the seismic waves spread in geological layers, where the seismic source of impulse is situated on the contact border between ice and water, and also with the seismic source of impulse on the surface of ice for the 3D case. The results of the numerical modelling are presented by wave fields, graphs of the velocity x-components and seismogramms for the two problem formulations. We carry out the analysis of influence of establishing the source of impulse on the border between ice and water on the decrease of the x-components of seismic wave velocities, on seismogramms and on wave fields. As a result, the model, where the seismic source of impulse is situated on the contact border between ice and water, makes worse the final result. The model with the source of impulse on the surface of ice demonstrates a decrease of the x-components of seismic wave velocities.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"