Результаты поиска по 'the transfer equation':
Найдено статей: 48
  1. Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  2. Gubanov S.M., Durnovtsev M.I., Kartavih A.A., Krainov A.Y.
    Numerical simulation of air cooling the tank to desublimate components of the gas mixture
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529

    For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.

    Views (last year): 3. Citations: 1 (RSCI).
  3. Gorshkov A.V., Prosviryakov Y.Y.
    Layered Bénard–Marangoni convection during heat transfer according to the Newton’s law of cooling
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940

    The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.

    Views (last year): 10. Citations: 3 (RSCI).
  4. Zhluktov S.V., Aksenov A.A., Savitskiy D.V.
    High-Reynolds number calculations of turbulent heat transfer in FlowVision software
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 461-481

    This work presents the model of heat wall functions FlowVision (WFFV), which allows simulation of nonisothermal flows of fluid and gas near solid surfaces on relatively coarse grids with use of turbulence models. The work follows the research on the development of wall functions applicable in wide range of the values of quantity y+. Model WFFV assumes smooth profiles of the tangential component of velocity, turbulent viscosity, temperature, and turbulent heat conductivity near a solid surface. Possibility of using a simple algebraic model for calculation of variable turbulent Prandtl number is investigated in this study (the turbulent Prandtl number enters model WFFV as parameter). The results are satisfactory. The details of implementation of model WFFV in the FlowVision software are explained. In particular, the boundary condition for the energy equation used in high-Reynolds number calculations of non-isothermal flows is considered. The boundary condition is deduced for the energy equation written via thermodynamic enthalpy and via full enthalpy. The capability of the model is demonstrated on two test problems: flow of incompressible fluid past a plate and supersonic flow of gas past a plate (M = 3).

    Analysis of literature shows that there exists essential ambiguity in experimental data and, as a consequence, in empirical correlations for the Stanton number (that being a dimensionless heat flux). The calculations suggest that the default values of the model parameters, automatically specified in the program, allow calculations of heat fluxes at extended solid surfaces with engineering accuracy. At the same time, it is obvious that one cannot invent universal wall functions. For this reason, the controls of model WFFV are made accessible from the FlowVision interface. When it is necessary, a user can tune the model for simulation of the required type of flow.

    The proposed model of wall functions is compatible with all the turbulence models implemented in the FlowVision software: the algebraic model of Smagorinsky, the Spalart-Allmaras model, the SST $k-\omega$ model, the standard $k-\varepsilon$ model, the $k-\varepsilon$ model of Abe, Kondoh, Nagano, the quadratic $k-\varepsilon$ model, and $k-\varepsilon$ model FlowVision.

    Views (last year): 23.
  5. The mathematical model, finite-difference schemes and algorithms for computation of transient thermoand hydrodynamic processes involved in commissioning the unified system including the oil producing well, electrical submersible pump and fractured-porous reservoir with bottom water are developed. These models are implemented in the computer package to simulate transient processes with simultaneous visualization of their results along with computations. An important feature of the package Oil-RWP is its interaction with the special external program GCS which simulates the work of the surface electric control station and data exchange between these two programs. The package Oil-RWP sends telemetry data and current parameters of the operating submersible unit to the program module GCS (direct coupling). The station controller analyzes incoming data and generates the required control parameters for the submersible pump. These parameters are sent to Oil-RWP (feedback). Such an approach allows us to consider the developed software as the “Intellectual Well System”.

    Some principal results of the simulations can be briefly presented as follows. The transient time between inaction and quasi-steady operation of the producing well depends on the well stream watering, filtration and capacitive parameters of oil reservoir, physical-chemical properties of phases and technical characteristics of the submersible unit. For the large time solution of the nonstationary equations governing the nonsteady processes is practically identical to the inverse quasi-stationary problem solution with the same initial data. The developed software package is an effective tool for analysis, forecast and optimization of the exploiting parameters of the unified oil-producing complex during its commissioning into the operating regime.

  6. Sorokin K.E., Byvaltsev P.M., Aksenov A.A., Zhluktov S.V., Savitskiy D.V., Babulin A.A., Shevyakov V.I.
    Numerical simulation of ice accretion in FlowVision software
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 83-96

    Certifying a transport airplane for the flights under icing conditions requires calculations aimed at definition of the dimensions and shapes of the ice bodies formed on the airplane surfaces. Up to date, software developed in Russia for simulation of ice accretion, which would be authorized by Russian certifying supervisory authority, is absent. This paper describes methodology IceVision recently developed in Russia on the basis of software FlowVision for calculations of ice accretion on airplane surfaces.

    The main difference of methodology IceVision from the other approaches, known from literature, consists in using technology Volume Of Fluid (VOF — volume of fluid in cell) for tracking the surface of growing ice body. The methodology assumes solving a time-depended problem of continuous grows of ice body in the Euler formulation. The ice is explicitly present in the computational domain. The energy equation is integrated inside the ice body. In the other approaches, changing the ice shape is taken into account by means of modifying the aerodynamic surface and using Lagrangian mesh. In doing so, the heat transfer into ice is allowed for by an empirical model.

    The implemented mathematical model provides capability to simulate formation of rime (dry) and glaze (wet) ice. It automatically identifies zones of rime and glaze ice. In a rime (dry) ice zone, the temperature of the contact surface between air and ice is calculated with account of ice sublimation and heat conduction inside the ice. In a glaze (wet) ice zone, the flow of the water film over the ice surface is allowed for. The film freezes due to evaporation and heat transfer inside the air and the ice. Methodology IceVision allows for separation of the film. For simulation of the two-phase flow of the air and droplets, a multi-speed model is used within the Euler approach. Methodology IceVision allows for size distribution of droplets. The computational algorithm takes account of essentially different time scales for the physical processes proceeding in the course of ice accretion, viz., air-droplets flow, water flow, and ice growth. Numerical solutions of validation test problems demonstrate efficiency of methodology IceVision and reliability of FlowVision results.

  7. Fomin A.A., Fomina L.N.
    Effect of buoyancy force on mixed convection of a variable density fluid in a square lid-driven cavity
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 575-595

    The paper considers the problem of stationary mixed convection and heat transfer of a viscous heatconducting fluid in a plane square lid-driven cavity. The hot top cover of the cavity has any temperature $T_\mathrm{H}$ and cold bottom wall has temperature $T_\mathrm{0} (T_\mathrm{H} > T_\mathrm{0})$, whereas in contrast the side walls are insulated. The fact that the fluid density can take arbitrary values depending on the amount of overheating of the cavity cover is a feature of the problem. The mathematical formulation includes the Navier–Stokes equations in the ’velocity–pressure’ variables and the heat balance equation which take into account the incompressibility of the fluid flow and the influence of volumetric buoyancy force. The difference approximation of the original differential equations has been performed by the control volume method. Numerical solutions of the problem have been obtained on the $501 \times 501$ grid for the following values of similarity parameters: Prandtl number Pr = 0.70; Reynolds number Re = 100 and 1000; Richardson number Ri = 0.1, 1, and 10; and the relative cover overheating $(T_\mathrm{H}-T_\mathrm{0})/T_\mathrm{0} = 0, 1, 2, 3$. Detailed flow patterns in the form of streamlines and isotherms of relative overheating of the fluid flow are given in the work. It is shown that the increase in the value of the Richardson number (the increase in the influence of buoyancy force) leads to a fundamental change in the structure of the liquid stream. It is also found out that taking into account the variability of the liquid density leads to weakening of the influence of Ri growth on the transformation of the flow structure. The change in density in a closed volume is the cause of this weakening, since it always leads to the existence of zones with negative buoyancy in the presence of a volumetric force. As a consequence, the competition of positive and negative volumetric forces leads in general to weakening of the buoyancy effect. The behaviors of heat exchange coefficient (Nusselt number) and coefficient of friction along the bottom wall of the cavity depending on the parameters of the problem are also analyzed. It is revealed that the greater the values of the Richardson number are, the greater, ceteris paribus, the influence of density variation on these coefficients is.

  8. Beshtokov M.K.
    Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373

    The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.

  9. Fialko N.S.
    Mixed algorithm for modeling of charge transfer in DNA on long time intervals
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72

    Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.

    Views (last year): 2. Citations: 2 (RSCI).
  10. Samarin K.V.
    Mathematical modeling of neutron transfers in nuclear reactions considering spin-orbit interaction
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 393-401

    The difference scheme for numerical solution of a time-dependant system of two Schrödinger equations with the operator of a spin-orbit interaction for a two-component spinor wave function is offered on the basis of a split method for a time-dependant Schrödinger equations. The computer simulation of the external neutrons’ wave functions evolution with different values of the full moment projection upon internuclear axis and probabilities of their transfer are executed for head-on collisions of 18O and 58Ni nuclei.

    Views (last year): 4.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"