All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Modeling of a channel wall interaction with an end seal flexibly restrained at the edge
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 387-400The paper proposes a new mathematical model to study the interaction dynamics of the longitudinal wall of a narrow channel with its end seal. The end seal was considered as the edge wall on a spring, i.e. spring-mass system. These walls interaction occurs via a viscous liquid filling the narrow channel; thus required the formulation and solution of the hydroelasticity problem. However, this problem has not been previously studied. The problem consists of the Navier–Stokes equations, the continuity equation, the edge wall dynamics equation, and the corresponding boundary conditions. Two cases of fluid motion in a narrow channel with parallel walls were studied. In the first case, we assumed the liquid motion as the creeping one, and in the second case as the laminar, taking into account the motion inertia. The hydroelasticty problem solution made it possible to determine the distribution laws of velocities and pressure in the liquid layer, as well as the motion law of the edge wall. It is shown that during creeping flow, the liquid physical properties and the channel geometric dimensions completely determine the damping in the considered oscillatory system. Both the end wall velocity and the longitudinal wall velocity affect the damping properties of the liquid layer. If the fluid motion inertia forces were taken into account, their influence on the edge wall vibrations was revealed, which manifested itself in the form of two added masses in the equation of its motion. The added masses and damping coefficients of the liquid layer due to the joint consideration of the liquid layer inertia and its viscosity were determined. The frequency and phase responses of the edge wall were constructed for the regime of steady-state harmonic oscillations. The simulation showed that taking into account the fluid layer inertia and its damping properties leads to a shift in the resonant frequencies to the low-frequency region and an increase in the oscillation amplitudes of the edge wall.
-
Difference splitting schemes for the system of one-dimensional equations of hemodynamics
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.
For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.
-
Motion control of a rigid body in viscous fluid
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 659-675Views (last year): 2. Citations: 1 (RSCI).We consider the optimal motion control problem for a mobile device with an external rigid shell moving along a prescribed trajectory in a viscous fluid. The mobile robot under consideration possesses the property of self-locomotion. Self-locomotion is implemented due to back-and-forth motion of an internal material point. The optimal motion control is based on the Sugeno fuzzy inference system. An approach based on constructing decision trees using the genetic algorithm for structural and parametric synthesis has been proposed to obtain the base of fuzzy rules.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"