Результаты поиска по '<i>А</i>-устойчивость':
Найдено статей: 163
  1. Никонов Э.Г., Назмитдинов Р.Г., Глуховцев П.И.
    Молекулярно-динамические исследования равновесных конфигураций одноименно заряженных частиц в планарных системах с круговой симметрией
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 609-618

    В данной работе представлены результаты численного анализа равновесных конфигураций отрицательно заряженных частиц (электронов), запертых в круговой области бесконечным внешним потенциалом на ее границе. Для поиска устойчивых конфигураций с минимальной энергией авторами разработан гибридный вычислительный алгоритм. Основой алгоритма являются интерполяционные формулы, полученные из анализа равновесных конфигураций, полученных с помощью вариационного принципа минимума энергии для произвольного, но конечного числа частиц в циркулярной модели. Решения нелинейных уравнений данной модели предсказывают формирование оболочечной структуры в виде колец (оболочек), заполненных электронами, число которых уменьшается при переходе от внешнего кольца к внутренним. Число колец зависит от полного числа заряженных частиц. Полученные интерполяционные формулы распределения полного числа электронов по кольцам используются в качестве начальных конфигураций для метода молекулярной динамики. Данный подход позволяет значительно повысить скорость достижения равновесной конфигурации для произвольно выбранного числа частиц по сравнению с алгоритмом имитации отжига Метрополиса и другими алгоритмами, основанными на методах глобальной оптимизации.

    Nikonov E.G., Nazmitdinov R.G., Glukhovtsev P.I.
    Molecular dynamics studies of equilibrium configurations of equally charged particles in planar systems with circular symmetry
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 609-618

    The equilibrium configurations of charged electrons, confined in the hard disk potential, are analysed by means of the hybrid numerical algorithm. The algorithm is based on the interpolation formulas, that are obtained from the analysis of the equilibrium configurations, provided by the variational principle developed in the circular model. The solution of the nonlinear equations of the circular model yields the formation of the shell structure which is composed of the series of rings. Each ring contains a certain number of particles, which decreases as one moves from the boundary ring to the central one. The number of rings depends on the total number of electrons. The interpolation formulas provide the initial configurations for the molecular dynamics calculations. This approach makes it possible to significantly increase the speed at which an equilibrium configuration is reached for an arbitrarily chosen number of particles compared to the Metropolis annealing simulation algorithm and other algorithms based on global optimization methods.

  2. Жданова О.Л., Жданов В.С., Неверова Г.П.
    Моделирование динамики планктонного сообщества с учетом токсичности фитопланктона
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1301-1323

    Предложена трехкомпонентная модельпланк тонного сообщества с дискретным временем. Сообщество представлено зоопланктоном и двумя конкурирующими за ресурсы видами фитопланктона: токсичным и нетоксичным. Модельдв ух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух видов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из видов-конкурентов доступностью внешних ресурсов. Изъятие фитопланктона за счет питания зоопланктоном описывается трофической функцией Холлинга II типа с учетом насыщения хищника. Способность фитопланктона защищаться от хищничества и избирательность питания хищника учтены в виде ограничения потребления: зоопланктон питается только нетоксичным фитопланктоном.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего сосуществованию двух видов фитопланктона и зоопланктона, может происходитьч ерез каскад бифуркаций удвоения периода, также возникает бифуркация Неймарка – Сакера, ведущая к возникновению квазипериодических колебаний. Вариация внутрипопуляционных параметров фито- или зоопланктона может приводитьк выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. В областях мультистабильности возможна кардинальная смена как динамического режима, так и состава сообщества за счет изменения начальных условий или же текущего состава сообщества. Предложенная в данной работе трехкомпонентная модель динамики сообщества с дискретным временем, являясь достаточно простой, позволяет получитьадекв атную динамику взаимодействующих видов: возникают динамические режимы, отражающие основные свойства экспериментальной динамики. Так, наблюдается динамика характерная для модели «хищник–жертва» без учета эволюции — с отставанием динамики хищника от жертвы примерно на четвертьперио да. Рассмотрение генетической неоднородности фитопланктона, даже в случае выделения всего двух генетически различных форм: токсичного и нетоксичного, позволяет наблюдатьв модели как длиннопериодические противофазные циклы хищника и жертвы, так и скрытые циклы, при которых плотностьч исленности жертв остается практически постоянной, а плотность численности хищников колеблется, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие видов.

    Zhdanova O.L., Zhdanov V.S., Neverova G.P.
    Modeling the dynamics of plankton community considering phytoplankton toxicity
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1301-1323

    We propose a three-component discrete-time model of the phytoplankton-zooplankton community, in which toxic and non-toxic species of phytoplankton compete for resources. The use of the Holling functional response of type II allows us to describe an interaction between zooplankton and phytoplankton. With the Ricker competition model, we describe the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.). Many phytoplankton species, including diatom algae, are known not to release toxins if they are not damaged. Zooplankton pressure on phytoplankton decreases in the presence of toxic substances. For example, Copepods are selective in their food choices and avoid consuming toxin-producing phytoplankton. Therefore, in our model, zooplankton (predator) consumes only non-toxic phytoplankton species being prey, and toxic species phytoplankton only competes with non-toxic for resources.

    We study analytically and numerically the proposed model. Dynamic mode maps allow us to investigate stability domains of fixed points, bifurcations, and the evolution of the community. Stability loss of fixed points is shown to occur only through a cascade of period-doubling bifurcations. The Neimark – Sacker scenario leading to the appearance of quasiperiodic oscillations is found to realize as well. Changes in intrapopulation parameters of phytoplankton or zooplankton can lead to abrupt transitions from regular to quasi-periodic dynamics (according to the Neimark – Sacker scenario) and further to cycles with a short period or even stationary dynamics. In the multistability areas, an initial condition variation with the unchanged values of all model parameters can shift the current dynamic mode or/and community composition.

    The proposed discrete-time model of community is quite simple and reveals dynamics of interacting species that coincide with features of experimental dynamics. In particular, the system shows behavior like in prey-predator models without evolution: the predator fluctuations lag behind those of prey by about a quarter of the period. Considering the phytoplankton genetic heterogeneity, in the simplest case of two genetically different forms: toxic and non-toxic ones, allows the model to demonstrate both long-period antiphase oscillations of predator and prey and cryptic cycles. During the cryptic cycle, the prey density remains almost constant with fluctuating predators, which corresponds to the influence of rapid evolution masking the trophic interaction.

  3. Бистабильность обнаруживается во множестве прикладных и теоретических исследований биологических систем (популяций, сообществ). В простейшем случае бистабильность проявляется в сосуществовании двух альтернативных устойчивых состояний равновесия системы, выбор между которыми зависит от начальных условий. Наличие бистабильности в простых моделях может привести к появлению квадростабильности при усложнении моделей, например при учете генетической, возрастной и пространственной структуры. Это обнаруживается в разных моделях и весьма разных содержательных задачах и, как правило, приводит к весьма интересным, часто контринтуитивным выводам. Обзору таких ситуаций посвящена данная работа. В ней рассмотрены бифуркации, приводящие к би- и квадростабильности в математических моделях следующих биологических объектов: система двух миграционно связанных популяций, находящихся под действием естественного отбора, все генетическое разнообразие которых представлено единственным диаллельным локусом с существенной разницей в приспособленностях для гомо- и гетерозигот; система двух миграционно связанных лимитированных популяций, описываемых моделью Базыкина или моделью Рикера; популяция с двумя стадиями развития и плотностно-зависимой регуляцией рождаемости, которая либо определяется только плотностью, либо дополнительно зависит от генетической структуры смежных поколений. Обнаружено, что все перечисленные модели имеют схожие сценарии рождения состояний равновесий, которые соответствуют формированию пространственно-временной неоднородности либо дифференциации особей разных поколений по признакам (первичной генетической дивергенции). Показано, что такая неоднородность является следствием локальной бистабильности и появляется в результате комбинации бифуркации вил (удвоения периода) и седло-узловой бифуркации.

    Frisman E.Y., Kulakov M.P.
    From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109

    Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.

  4. Минкевич И.Г.
    К кинетике энтропии системы с дискретными микроскопическими состояниями
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1207-1236

    Рассматривается изолированная система, обладающая дискретным множеством микроскопических состояний, которая совершает спонтанные случайные переходы между микросостояниями. Сформулированы кинетические уравнения для совокупности вероятностей пребывания системы в различных микросостояниях. Рассмотрено общее безразмерное выражение для энтропии такой системы, зависящее от распределения этих вероятностей. Поставлены две задачи: 1) изучить влияние возможной неравновероятности микроскопических состояний системы, в том числе в состоянии ее общего равновесия, на величину ее энтропии; 2) изучить кинетику изменения энтропии в неравновесном состоянии системы. Для скоростей переходов между микросостояниями принята кинетика первого порядка. Влияние возможной неравновероятности микросостояний системы рассмотрено в двух вариантах: а) микросостояния образуют две подгруппы с вероятностями, одинаковыми внутри каждой подгруппы, но отличающимися по величине между подгруппами; б) вероятности микросостояний произвольно варьируют вблизи точки, где они равны одной и той же величине. Показано, что, когда общее число микросостояний фиксировано, отклонения энтропии от значения, соответствующего равновероятному распределению по микросостояниям, крайне малы, что дает строгое обоснование известной гипотезы о равновероятности микросостояний при термодинамическом равновесии. С другой стороны, на нескольких характерных примерах показано, что структура случайных переходов между микросостояниями оказывает большое влияние на скорость и характер установления внутреннего равновесия системы, на временную зависимость энтропии и на выражение для скорости продукции энтропии. При определенных схемах этих переходов возможно наличие быстрых и медленных компонент в переходных процессах и существование этих процессов в виде затухающих колебаний. Условием универсальности и устойчивости равновесного распределения является то, что для любой пары микросостояний должны существовать последовательность переходов из одного в другое и, соответственно, отсутствие состояний-«ловушек».

    Minkevich I.G.
    On the kinetics of entropy of a system with discrete microscopic states
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1207-1236

    An isolated system, which possesses a discrete set of microscopic states, is considered. The system performs spontaneous random transitions between the microstates. Kinetic equations for the probabilities of the system staying in various microstates are formulated. A general dimensionless expression for entropy of such a system, which depends on the probability distribution, is considered. Two problems are stated: 1) to study the effect of possible unequal probabilities of different microstates, in particular, when the system is in its internal equilibrium, on the system entropy value, and 2) to study the kinetics of microstate probability distribution and entropy evolution of the system in nonequilibrium states. The kinetics for the rates of transitions between the microstates is assumed to be first-order. Two variants of the effects of possible nonequiprobability of the microstates are considered: i) the microstates form two subgroups the probabilities of which are similar within each subgroup but differ between the subgroups, and ii) the microstate probabilities vary arbitrarily around the point at which they are all equal. It is found that, under a fixed total number of microstates, the deviations of entropy from the value corresponding to the equiprobable microstate distribution are extremely small. The latter is a rigorous substantiation of the known hypothesis about the equiprobability of microstates under the thermodynamic equilibrium. On the other hand, based on several characteristic examples, it is shown that the structure of random transitions between the microstates exerts a considerable effect on the rate and mode of the establishment of the system internal equilibrium, on entropy time dependence and expression of the entropy production rate. Under definite schemes of these transitions, there are possibilities of fast and slow components in the transients and of the existence of transients in the form of damped oscillations. The condition of universality and stability of equilibrium microstate distribution is that for any pair of microstates, a sequence of transitions should exist, which provides the passage from one microstate to next, and, consequently, any microstate traps should be absent.

  5. Бештоков М.Х.
    Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373

    В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.

    Beshtokov M.K.
    Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373

    The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.

  6. Зленко Д.В., Красильников П.М.
    Молекулярное моделирование липидных бислойных мембран
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 423-436

    Построена полноатомная модель молекулы липида (дистеароилфосфатидилхолина, ДСФХ) и фрагмента липидной мембраны, необходимая для описания свойств липидных мембран в рамках метода молекулярной динамики. Построенная модель устойчива во времени, обладает термодинамически адекватным распределением энергии по степеням свободы системы и имеет параметры, хорошо согласующиеся с параметрами реального ДСФХ. С использованием построенной модели проведены расчеты проницаемости липидного бислоя для ионов натрия, воды и кислорода. Получены профили подвижности и коэффициентов диффузии этих частиц при их движении сквозь бислой, на основании которых оценены соответствующие коэффициенты проницаемости модельной мембраны. Показано, что липидные мембраны обладают значительным диффузионным сопротивлением не только для молекулы воды и иона натрия, но и для неполярной молекулы кислорода. Предложены теоретические методы расчета потоков исследуемых частиц через липидный бислой, а также методы оценки коэффициентов распределения малых молекул в системах липидный бислой - вода.

    Zlenko D.V., Krasilnikov P.M.
    Permeability of lipid membranes. A molecular dynamic study
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 423-436

    A correct model of lipid molecule (distearoylphosphatidylcholine, DSPC) and lipid membrane in water was constructed. Model lipid membrane is stable and has a reliable energy distribution among degrees of freedom. Also after equilibration model system has spatial parameters very similar to those of real DSPC membrane in liquid-crystalline phase. This model was used for studying of lipid membrane permeability to oxygen and water molecules and sodium ion. We obtained the values for transmembrane mobility and diffusion coefficients profiles, which we used for effective permeability coefficients calculation. We found lipid membranes to have significant diffusional resistance to penetration not only by charged particles, such as ions, but also by nonpolar molecules, such as oxygen molecule. We propose theoretical approach for calculation of particle flow across a membrane, as well as methods for estimation of distribution coefficients between bilayer and water phase.

    Views (last year): 20. Citations: 2 (RSCI).
  7. Брацун Д.А., Захаров А.П.
    Моделирование пространственно-временной динамики циркадианных ритмов Neurospora crassa
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 191-213

    В работе предложена новая модель циркадианных колебаний нейроспоры, которая описывает пространственно-временную динамику белков, ответственных за механизм биоритмов. Модель основывается на нелинейном взаимодействии белков FRQ и WCC, кодируемых генами frequency и white collar, и включает в себя как положительную, так и отрицательную петлю обратной связи. Главным элементом механизма колебаний является эффект запаздывания в биохимических реакциях транскрипции генов. Показано, что модель воспроизводит такие свойства циркадианных колебаний нейроспоры как захват частоты под действием внешнего периодического освещения, сброс фазы биоритмов при воздействии импульса света, устойчивость механизма колебаний по отношению к случайным флуктуациям и т. д. Исследованы волновые структуры, возникающие в ходе пространственной эволюции системы. Показано, что волны синхронизации биоритмов среды возникают под воздействием базального транскрипционного фактора.

    Bratsun D.A., Zakharov A.P.
    Modelling spatio-temporal dynamics of circadian rythms in Neurospora crassa
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 191-213

    We derive a new model of circadian oscillations in Neurospora crassa, which is suitable to analyze both temporal and spatial dynamics of proteins responsible for mechanism of rythms. The model is based on the non-linear interplay between proteins FRQ and WCC which are products of transcription of frequency and white collar genes forming a feedback loop comprised both positive and negative elements. The main component of oscillations mechanism is supposed to be time-delay in biochemical reactions of transcription. We show that the model accounts for various features observed in Neurospora’s experiments such as entrainment by light cycles, phase shift under light pulse, robustness to action of fluctuations and so on. Wave patterns excited during spatial development of the system are studied. It is shown that the wave of synchronization of biorythms arises under basal transcription factors.

    Views (last year): 6. Citations: 20 (RSCI).
  8. Исследуется устойчивость пространственно-периодических диссипативных структур изотермической электроконвекции в плоском слое вязкой несжимаемой слабопроводящей жидкости с униполярной инжекционной проводимостью.

    Isothermal electroconvection in a dielectric liquid arising in a plane-parallel electrode system due to unipolar injection of charges from the cathode is considered. Spatially periodic rolls structures stability is investigated.

    Views (last year): 1. Citations: 1 (RSCI).
  9. Башкирцева И.А., Екатеринчук Е.Д., Рязанова Т.В., Сысолятина А.А.
    Математическое моделирование стохастических равновесий и бизнес-циклов модели Гудвина
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 107-118

    В работе рассматривается модель экономической динамики Гудвина, находящаяся под воздействием случайных возмущений. Проведен полный параметрический анализ равновесий и циклов детерминированной системы. Исследованы вероятностные свойства аттракторов стохастической системы с использованием техники функций стохастической чувствительности и метода прямого численного моделирования. Обсуждается явление генерации стохастических бизнес-циклов в зоне, где исходная детерминированная модель имеет лишь устойчивые равновесия.

    Bashkirtseva I.A., Ekaterinchuk E.D., Ryazanova T.V., Sysolyatina A.A.
    Mathematical modeling of stochastic equilibria and business cycles of Goodwin model
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 107-118

    The Goodwin dynamical model under the random external disturbances is considered. A full parametrical analysis for equlibria and cycles of deterministic model is developed. We study probabilistic properties of stochastic attractors using stochastic sensitivity functions technique and numerical methods. A phenomenon of the generation of stochastic business cycles in the zones of stable equilibria is discussed.

    Views (last year): 5. Citations: 4 (RSCI).
  10. Никитин И.С., Филимонов А.В., Якушев В.Л.
    Распространение волн Рэлея при косом ударе метеорита о поверхность земли и их воздействие на здания и сооружения
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 981-992

    В данной работе решается динамическая задача теории упругости о совместном нормальном и касательном воздействии на полупространство. С помощью этой задачи моделируется процесс наклонного падения метеорита на земную поверхность. Проведены исследования и расчеты поверхностной волны Рэлея. Полученное решение использовано в качестве внешнего воздействия на высотное здание, находящееся на некотором расстоянии от места падения для оценки безопасности и устойчивости его конструкции. Проведены численные эксперименты на основе конечно-элементного программного комплекса STARK ES. Рассчитаны амплитуды колебаний верхних этажей выбранного объекта при таком динамическом воздействии. Также проведено ихсистема тическое сравнение с результатами расчета при колебаниях основания, соответствующихст андартной акселерограмме 8-балльного землетрясения.

    Nikitin I.S., Filimonov A.V., Yakushev V.L.
    Propagation of Rayleigh waves at oblique impact of the meteorite about the earth’s surface and their effects on buildings and structures
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 981-992

    In this paper the dynamic elasticity problem of the simultaneous normal and tangential impact on the half-space is solved. This problem simulates the oblique incidence of meteorite on the Earth’s surface. The surface Rayleigh wave is investigated. The resulting solution is used as an external effect on the high-rise building, located at some distance from the spot of falling for the safety and stability assessment of its structure. Numerical experiments were made based on the finite element software package STARK ES. Upper floors amplitudes of the selected object were calculated under such dynamic effects. Also a systematic comparison with the results at the foundation vibrations, relevant to  standard a 8-point earthquake accelerograms, was made.

    Views (last year): 3. Citations: 2 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"