Результаты поиска по 'β)</i>-производная':
Найдено статей: 83
  1. Остроухов П.А., Камалов Р.А., Двуреченский П.Е., Гасников А.В.
    Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376

    В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.

    Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.

    Ostroukhov P.A., Kamalov R.A., Dvurechensky P.E., Gasnikov A.V.
    Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376

    In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.

    For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.

    Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.

    Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.

  2. Усанов Д.А., Скрипаль А.В., Аверьянов А.П., Добдин С.Ю., Кащавцев Е.О.
    Метод оценки риска возникновения сердечно-сосудистой недостаточности при физической нагрузке с использованием лазерной автодинной интерферометрии
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 311-321

    Представлены результаты исследования риска возникновения сердечно-сосудистой недостаточности юных спортсменов и подростков при стрессовой физической нагрузке. Описан метод скрининг-диагностики риска развития коллапсоидных осложнений. Приведены результаты бесконтактного измерения формы пульсовой волны лучевой артерии в области запястья с использованием полупроводникового лазерного автодина. При измерениях использовался лазерный диод типа RLD-650 со следующими характеристиками: мощность излучения — 5 мВт, длина волны излучения — 654 нм. Была решена задача по восстановлению формы движения отражателя, в качестве которого выступала поверхность кожи над артерией человека, апробирован метод оценки риска возникновения сердечно-сосудистой недостаточности при физической нагрузке и проведен анализ результатов его применения для оценки риска развития коллапсоидной реакции у юных спортсменов. В качестве анализируемых параметров были выбраны следующие показатели: крутизна систолического подъема на участке быстрой и медленной фазы, скорость изменения пульсовой волны на катакроте, вариабельность кардиоинтервалов, определяемая по временным интервалам между максимумами пульсовых волн. Форма пульсовой волны анализировалась по ее первой и второй производной по времени. Нули первой производной пульсовой волны позволяют выделить время систолического подъема. Минимум второй производной соответствует окончанию фазы быстрого и началу фазы медленного нарастания давления в систолу. Использование первой и второй производной пульсовой волны позволило раздельно анализировать форму пульсовой волны в фазе быстрого и в фазе медленного роста давления во время систолического подъема. Показано, что наличие аномалий в форме пульсовой волны в сочетании с ваготоническим типом нервной регуляции сердечно-сосудистой системы является признаком возникновения опасности коллапсоидной реакции при физической нагрузке.

    Usanov D.A., Skripal A.V., Averyanov A.P., Dobdin S.Yu., Kashchavtsev E.O.
    Method of estimation of heart failure during a physical exercise
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 311-321

    The results of determination of the risk of cardiovascular failure of young athletes and adolescents in stressful physical activity have been demonstrated. The method of screening diagnostics of the risk of developing heart failure has been described. The results of contactless measurement of the form of the pulse wave of the radial artery using semiconductor laser autodyne have been presented. In the measurements used laser diode type RLD-650 specifications: output power of 5 mW, emission wavelength 654 nm. The problem was solved by the reduced form of the reflector movement, which acts as the surface of the skin of the human artery, tested method of assessing the risk of cardiovascular disease during exercise and the analysis of the results of its application to assess the risk of cardiovascular failure reactions of young athletes. As analyzed parameters were selected the following indicators: the steepness of the rise in the systolic portion of the fast and slow phase, the rate of change in the pulse wave catacrota variability of cardio intervals as determined by the time intervals between the peaks of the pulse wave. It analyzed pulse wave form on its first and second derivative with respect to time. The zeros of the first derivative of the pulse wave allow to set aside time in systolic rise. A minimum of the second derivative corresponds to the end of the phase and the beginning of the slow pressure build-up in the systole. Using the first and second derivative of the pulse wave made it possible to separately analyze the pulse wave form phase of rapid and slow pressure increase phase during systolic expansion. It has been established that the presence of anomalies in the form of the pulse wave in combination with vagotonic nervous regulation of the cardiovascular system of a patient is a sign of danger collapse of circulation during physical exercise.

    Views (last year): 8. Citations: 1 (RSCI).
  3. Карпаев А.А., Алиев Р.Р.
    Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864

    Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.

    Karpaev A.A., Aliev R.R.
    Application of simplified implicit Euler method for electrophysiological models
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864

    A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.

  4. Остроухов П.А.
    Тензорные методы внутри смешанного оракула для решения задач типа min-min
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 377-398

    В данной статье рассматривается задача типа min-min: минимизация по двум группам переменных. Данная задача в чем-то похожа на седловую (min-max), однако лишена некоторых сложностей, присущих седловым задачам. Такого рода постановки могут возникать, если в задаче выпуклой оптимизации присутствуют переменные разных размерностей или если какие-то группы переменных определены на разных множествах. Подобная структурная особенность проблемы дает возможность разбивать ее на подзадачи, что позволяет решать всю задачу с помощью различных смешанных оракулов. Ранее в качестве возможных методов для решения внутренней или внешней задачи использовались только методы первого порядка или методы типа эллипсоидов. В нашей работе мы рассматриваем данный подход с точки зрения возможности применения алгоритмов высокого порядка (тензорных методов) для решения внутренней подзадачи. Для решения внешней подзадачи мы используем быстрый градиентный метод.

    Мы предполагаем, что внешняя подзадача определена на выпуклом компакте, в то время как для внутренней задачи мы отдельно рассматриваем задачу без ограничений и определенную на выпуклом компакте. В связи с тем, что тензорные методы по определению используют производные высокого порядка, время на выполнение одной итерации сильно зависит от размерности решаемой проблемы. Поэтому мы накладываем еще одно условие на внутреннюю подзадачу: ее размерность не должна превышать 1000. Для возможности использования смешанного оракула намнео бходимы некоторые дополнительные предположения. Во-первых, нужно, чтобы целевой функционал был выпуклымпо совокупности переменных и чтобы его градиент удовлетворял условию Липшица также по совокупности переменных. Во-вторых, нам необходимо, чтобы целевой функционал был сильно выпуклый по внутренней переменной и его градиент по внутренней переменной удовлетворял условию Липшица. Также для применения тензорного метода нам необходимо выполнение условия Липшица p-го порядка ($p > 1$). Наконец, мы предполагаем сильную выпуклость целевого функционала по внешней переменной, чтобы иметь возможность использовать быстрый градиентный метод для сильно выпуклых функций.

    Стоит отметить, что в качестве метода для решения внутренней подзадачи при отсутствии ограничений мы используем супербыстрый тензорный метод. При решении внутренней подзадачи на компакте используется ускоренный проксимальный тензорный метод для задачи с композитом.

    В конце статьи мы также сравниваем теоретические оценки сложности полученных алгоритмов с быстрым градиентным методом, который не учитывает структуру задачи и решает ее как обычную задачу выпуклой оптимизации (замечания 1 и 2).

    Ostroukhov P.A.
    Tensor methods inside mixed oracle for min-min problems
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 377-398

    In this article we consider min-min type of problems or minimization by two groups of variables. In some way it is similar to classic min-max saddle point problem. Although, saddle point problems are usually more difficult in some way. Min-min problems may occur in case if some groups of variables in convex optimization have different dimensions or if these groups have different domains. Such problem structure gives us an ability to split the main task to subproblems, and allows to tackle it with mixed oracles. However existing articles on this topic cover only zeroth and first order oracles, in our work we consider high-order tensor methods to solve inner problem and fast gradient method to solve outer problem.

    We assume, that outer problem is constrained to some convex compact set, and for the inner problem we consider both unconstrained case and being constrained to some convex compact set. By definition, tensor methods use high-order derivatives, so the time per single iteration of the method depends a lot on the dimensionality of the problem it solves. Therefore, we suggest, that the dimension of the inner problem variable is not greater than 1000. Additionally, we need some specific assumptions to be able to use mixed oracles. Firstly, we assume, that the objective is convex in both groups of variables and its gradient by both variables is Lipschitz continuous. Secondly, we assume the inner problem is strongly convex and its gradient is Lipschitz continuous. Also, since we are going to use tensor methods for inner problem, we need it to be p-th order Lipschitz continuous ($p > 1$). Finally, we assume strong convexity of the outer problem to be able to use fast gradient method for strongly convex functions.

    We need to emphasize, that we use superfast tensor method to tackle inner subproblem in unconstrained case. And when we solve inner problem on compact set, we use accelerated high-order composite proximal method.

    Additionally, in the end of the article we compare the theoretical complexity of obtained methods with regular gradient method, which solves the mentioned problem as regular convex optimization problem and doesn’t take into account its structure (Remarks 1 and 2).

  5. Мусаев А.А., Григорьев Д.А.
    Обзор современных технологий извлечения знаний из текстовых сообщений
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1291-1315

    Решение общей проблемы информационного взрыва связано с системами автоматической обработки цифровых данных, включая их распознавание, сортировку, содержательную обработку и представление в виде, приемлемом для восприятия человеком. Естественным решением является создание интеллектуальных систем извлечения знаний из неструктурированной информации. При этом явные успехи в области обработки структурированных данных контрастируют со скромными достижениями в области анализа неструктурированной информации, в частности в задачах обработки текстовых документов. В настоящее время данное направление находится в стадии интенсивных исследований и разработок. Данная работа представляет собой системный обзор международных и отечественных публикаций, посвященных ведущему тренду в области автоматической обработки потоков текстовой информации, а именно интеллектуальному анализу текстов или Text Mining (TM). Рассмотрены основные задачи и понятия TM, его место в области проблемы искусственного интеллекта, а также указаны сложности при обработке текстов на естественном языке (NLP), обусловленные слабой структурированностью и неоднозначностью лингвистической ин- формации. Описаны стадии предварительной обработки текстов, их очистка и селекция признаков, которые, наряду с результатами морфологического, синтаксического и семантического анализа, являются компонентами TM. Процесс интеллектуального анализа текстов представлен как отображение множества текстовых документов в «знания», т.е. в очищенную от избыточности и шума совокупность сведений, необходимых для решения конкретной прикладной задачи. На примере задачи трейдинга продемонстрирована формализация принятия торгового решения, основанная на совокупности аналитических рекомендаций. Типичными примерами TM являются задачи и технологии информационного поиска (IR), суммаризации текста, анализа тональности, классификации и кластеризации документов и т. п. Общим вопросом для всех методов TM является выбор типа словоформ и их производных, используемых для распознавания контента в последовательностях символов NL. На примере IR рассмотрены типовые алгоритмы поиска, основанные на простых словоформах, фразах, шаблонах и концептах, а также более сложные технологии, связанные с дополнением шаблонов синтаксической и семантической информацией. В общем виде дано описание механизмов NLP: морфологический, синтаксический, семантический и прагматический анализ. Приведен сравнительный анализ современных инструментов TM, позволяющий осуществить выбор платформы, исходя из особенности решаемой задачи и практических навыков пользователя.

    Musaev A.A., Grigoriev D.A.
    Extracting knowledge from text messages: overview and state-of-the-art
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1291-1315

    In general, solving the information explosion problem can be delegated to systems for automatic processing of digital data. These systems are intended for recognizing, sorting, meaningfully processing and presenting data in formats readable and interpretable by humans. The creation of intelligent knowledge extraction systems that handle unstructured data would be a natural solution in this area. At the same time, the evident progress in these tasks for structured data contrasts with the limited success of unstructured data processing, and, in particular, document processing. Currently, this research area is undergoing active development and investigation. The present paper is a systematic survey on both Russian and international publications that are dedicated to the leading trend in automatic text data processing: Text Mining (TM). We cover the main tasks and notions of TM, as well as its place in the current AI landscape. Furthermore, we analyze the complications that arise during the processing of texts written in natural language (NLP) which are weakly structured and often provide ambiguous linguistic information. We describe the stages of text data preparation, cleaning, and selecting features which, alongside the data obtained via morphological, syntactic, and semantic analysis, constitute the input for the TM process. This process can be represented as mapping a set of text documents to «knowledge». Using the case of stock trading, we demonstrate the formalization of the problem of making a trade decision based on a set of analytical recommendations. Examples of such mappings are methods of Information Retrieval (IR), text summarization, sentiment analysis, document classification and clustering, etc. The common point of all tasks and techniques of TM is the selection of word forms and their derivatives used to recognize content in NL symbol sequences. Considering IR as an example, we examine classic types of search, such as searching for word forms, phrases, patterns and concepts. Additionally, we consider the augmentation of patterns with syntactic and semantic information. Next, we provide a general description of all NLP instruments: morphological, syntactic, semantic and pragmatic analysis. Finally, we end the paper with a comparative analysis of modern TM tools which can be helpful for selecting a suitable TM platform based on the user’s needs and skills.

  6. Токарев А.А., Бутылин А.А., Атауллаханов Ф.И.
    Транспорт и адгезия тромбоцитов в условиях потока крови: роль эритроцитов
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 185-200

    Система гемостаза служит организму для экстренного восстановления целостности стенок кровеносных сосудов при их повреждении. Главные компоненты этой системы – тромбоциты (самые маленькие клетки крови) – постоянно содержатся в крови и быстро адгезируют к месту повреждения. Миграция тромбоцитов поперёк потока крови и их попадание на место адгезии определяются характером течения крови и, в частности, физическим присутствием в крови других клеток – эритроцитов. В данном обзоре рассматриваются основные закономерности этого влияния и имеющиеся в литературе математические модели миграции тромбоцитов поперёк потока крови и их адгезии к стенке сосуда, основанные на дифференциальных уравнениях в частных производных вида «конвекция-диффузия». Обсуждаются недавние достижения в данной области. Понимание механизмов указанных процессов необходимо для построения адекватных математических моделей работы гемостатической системы в условиях потока крови в норме и патологии.

    Tokarev A.A., Butylin A.A., Ataullakhanov F.I.
    Platelet transport and adhesion in shear blood flow: the role of erythrocytes
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 185-200

    Hemostatic system serves the organism for urgent repairs of damaged blood vessel walls. Its main components – platelets, the smallest blood cells, – are constantly contained in blood and quickly adhere to the site of injury. Platelet migration across blood flow and their hit with the wall are governed by blood flow conditions and, in particular, by the physical presence of other blood cells – erythrocytes. In this review we consider the main regularities of this influence, available mathematical models of platelet migration across blood flow and adhesion based on "convection-diffusion" PDEs, and discuss recent advances in this field. Understanding of the mechanisms of these processes is necessary for building of adequate mathematical models of hemostatic system functioning in blood flow in normal and pathological conditions.

    Views (last year): 3. Citations: 8 (RSCI).
  7. Лобанов А.И., Миров Ф.Х.
    Использование разностных схем для уравнения переноса со стоком при моделировании энергосетей
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1149-1164

    Современные системы транспортировки электроэнергии представляют собой сложные инженерные системы. В состав таких систем входят как точечные объекты (производители электроэнергии, потребители, трансформаторные подстанции), так и распределенные (линии электропередач). При создании математических моделей такие сооружения представляются в виде графов с различными типами узлов. Для исследования динамических эффектов в таких системах приходится решать численно систему дифференциальных уравнений в частных производных гиперболического типа.

    В работе использован подход, аналогичный уже примененным ранее при моделировании подобных задач. Использован вариант метода расщепления. Авторами предложен свой способ расщепления. В отличие от большинства известных работ расщепление проводится не по физическим процессам (перенос без диссипации, отдельно диссипативные процессы), а на перенос со стоковыми членами и «обменную» часть. Такое расщепление делает возможным построение гибридных схем для инвариантов Римана, обладающих высоким порядком аппроксимации и минимальной диссипативной погрешностью. Для однофазной ЛЭП приведен пример построения такой гибридной разностной схемы. Предложенная разностная схема строится на основе анализа свойств схем в пространстве неопределенных коэффициентов.

    Приведены примеры расчетов модельной задачи с использованием предложенного расщепления и построенной разностной схемы. На примере численных расчетов показано, что разностная схема позволяет численно воспроизводить возникающие области больших градиентов. Показано, что разностная схема позволяет обнаружить резонансы в подобных системах.

    Lobanov A.I., Mirov F.Kh.
    On the using the differential schemes to transport equation with drain in grid modeling
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1149-1164

    Modern power transportation systems are the complex engineering systems. Such systems include both point facilities (power producers, consumers, transformer substations, etc.) and the distributed elements (f.e. power lines). Such structures are presented in the form of the graphs with different types of nodes under creating the mathematical models. It is necessary to solve the system of partial differential equations of the hyperbolic type to study the dynamic effects in such systems.

    An approach similar to one already applied in modeling similar problems earlier used in the work. New variant of the splitting method was used proposed by the authors. Unlike most known works, the splitting is not carried out according to physical processes (energy transport without dissipation, separately dissipative processes). We used splitting to the transport equations with the drain and the exchange between Reimann’s invariants. This splitting makes possible to construct the hybrid schemes for Riemann invariants with a high order of approximation and minimal dissipation error. An example of constructing such a hybrid differential scheme is described for a single-phase power line. The difference scheme proposed is based on the analysis of the properties of the schemes in the space of insufficient coefficients.

    Examples of the model problem numerical solutions using the proposed splitting and the difference scheme are given. The results of the numerical calculations shows that the difference scheme allows to reproduce the arising regions of large gradients. It is shown that the difference schemes also allow detecting resonances in such the systems.

  8. Калачин С.В.
    Нечеткое моделирование механизма передачи панического состояния среди людей с различными видами темперамента
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1079-1092

    Массовое скопление людей всегда представляет собой потенциальную опасность и угрозу для их жизни. К тому же ежегодно в мире в давке, основной причиной которой является массовая паника, гибнет очень большое количество людей. Поэтому изучение феномена массовой паники, ввиду ее чрезвычайной социальной опасности, представляет собой важную научную задачу. Имеющаяся информация о процессах ее возникновения и распространения относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели механизма передачи панического состояния среди людей с различными видами темперамента выбрана теория нечетких множеств.

    При разработке нечеткой модели было сделано предположение о том, что паника, из эпицентра шокирующего стимула, распространяется среди людей по волновому принципу, проходя с различной частотой через разные среды (виды темперамента человека), и определяется скоростью и интенсивностью циркулярной реакции механизма передачи панического состояния. Поэтому разработанная нечеткая модель, наряду с двумя входами, имеет два выхода — скорость и интенсивность циркулярной реакции. В блоке «Фаззификация» вычисляются степени принадлежности числовых значений входных параметров (частоты волны распространения паники и восприимчивости человека к паническим ситуациям) к нечетким множествам. Блок «Вывод» на входе получает степени принадлежности для каждого входного параметра и на выходе определяет результирующую функцию принадлежности скорости циркулярной реакции и ее производную, являющуюся функцией принадлежности для интенсивности циркулярной реакции. В блоке «Дефаззификация» с помощью метода центра тяжести определяется количественное значение для каждого выходного параметра. Оценка качества разработанной нечеткой модели, проведенная посредством вычисления коэффициента детерминации, показала, что разработанная математическая модель относится к разряду моделей хорошего качества.

    Полученный результат в виде количественных оценок циркулярной реакции позволяет улучшить качество понимания психических процессов, происходящих при передаче панического состояния среди людей. Кроме того, это дает возможность усовершенствовать существующие и разрабатывать новые модели хаотичного поведения людей, которые предназначены для выработки эффективных решений в кризисных ситуациях, направленных на полное либо частичное предотвращение распространения массовой паники, приводящей к возникновению панического бегства, давки и появлению человеческих жертв.

    Kalachin S.V.
    Fuzzy modeling the mechanism of transmitting panic state among people with various temperament species
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1079-1092

    A mass congestion of people always represents a potential danger and threat for their lives. In addition, every year in the world a very large number of people die because of the crush, the main cause of which is mass panic. Therefore, the study of the phenomenon of mass panic in view of her extreme social danger is an important scientific task. Available information, about the processes of her occurrence and spread refers to the category inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of the mechanism of transmitting panic state among people with various temperament species.

    When developing an fuzzy model, it was assumed that panic, from the epicenter of the shocking stimulus, spreads among people according to the wave principle, passing at different frequencies through different environments (types of human temperament), and is determined by the speed and intensity of the circular reaction of the mechanism of transmitting panic state among people. Therefore, the developed fuzzy model, along with two inputs, has two outputs — the speed and intensity of the circular reaction. In the block «Fuzzyfication», the degrees of membership of the numerical values of the input parameters to fuzzy sets are calculated. The «Inference» block at the input receives degrees of belonging for each input parameter and at the output determines the resulting function of belonging the speed of the circular reaction and her derivative, which is a function of belonging for the intensity of the circular reaction. In the «Defuzzyfication» block, using the center of gravity method, a quantitative value is determined for each output parameter. The quality assessment of the developed fuzzy model, carried out by calculating of the determination coefficient, showed that the developed mathematical model belongs to the category of good quality models.

    The result obtained in the form of quantitative assessments of the circular reaction makes it possible to improve the quality of understanding of the mental processes occurring during the transmission of the panic state among people. In addition, this makes it possible to improve existing and develop new models of chaotic humans behaviors. Which are designed to develop effective solutions in crisis situations, aimed at full or partial prevention of the spread of mass panic, leading to the emergence of panic flight and the appearance of human casualties.

     

  9. Голубев В.И., Шевченко А.В., Петров И.Б.
    Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910

    Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.

    В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.

    Golubev V.I., Shevchenko A.V., Petrov I.B.
    Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910

    The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.

    In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.

  10. Никитюк А.С.
    Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672

    Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.

    Nikitiuk A.S.
    Parameter identification of viscoelastic cell models based on force curves and wavelet transform
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672

    Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"