Результаты поиска по 'адаптивное управление':
Найдено статей: 15
  1. Настоящая статья описывает разработанную авторами модель построения распределенной вычислительной сети и осуществления в ней распределенных вычислений, которые выполняются в рамках программно-информационной среды, обеспечивающей управление информационными, автоматизированными и инженерными системами интеллектуальных зданий. Представленная модель основана на функциональном подходе с инкапсуляцией недетерминированных вычислений и различных побочных эффектов в монадические вычисления, что позволяет применять все достоинства функционального программирования для выбора и исполнения сценариев управления различными аспектами жизнедеятельности зданий и сооружений. Кроме того, описываемая модель может использоваться совместно с процессом интеллектуализации технических и социотехнических систем для повышения уровня автономности принятия решений по управлению значениями параметров внутренней среды здания, а также для реализации методов адаптивного управления, в частности применения различных техник и подходов искусственного интеллекта. Важной частью модели является направленный ациклический граф, который представляет собой расширение блокчейна с возможностью существенным образом снизить стоимость транзакций с учетом выполнения смарт-контрактов. По мнению авторов, это позволит реализовать новые технологии и методы (распределенный реестр на базе направленного ациклического графа, вычисления на краю и гибридную схему построения искусственных интеллектуальных систем) и все это вместе использовать для повышения эффективности управления интеллектуальными зданиями. Актуальность представленной модели основана на необходимости и важности перевода процессов управления жизненным циклом зданий и сооружений в парадигму Индустрии 4.0 и применения для управления методов искусственного интеллекта с повсеместным внедрением автономных искусственных когнитивных агентов. Новизна модели вытекает из совокупного рассмотрения распределенных вычислений в рамках функционального подхода и гибридной парадигмы построения искусственных интеллектуальных агентов для управления интеллектуальными зданиями. Работа носит теоретический характер. Статья будет интересна ученым и инженерам, работающим в области автоматизации технологических и производственных процессов как в рамках интеллектуальных зданий, так и в части управления сложными техническими и социотехническими системами в целом.

    The present article describes the authors’ model of construction of the distributed computer network and realization in it of the distributed calculations which are carried out within the limits of the software-information environment providing management of the information, automated and engineering systems of intellectual buildings. The presented model is based on the functional approach with encapsulation of the non-determined calculations and various side effects in monadic calculations that allows to apply all advantages of functional programming to a choice and execution of scenarios of management of various aspects of life activity of buildings and constructions. Besides, the described model can be used together with process of intellectualization of technical and sociotechnical systems for increase of level of independence of decision-making on management of values of parameters of the internal environment of a building, and also for realization of methods of adaptive management, in particular application of various techniques and approaches of an artificial intellect. An important part of the model is a directed acyclic graph, which is an extension of the blockchain with the ability to categorically reduce the cost of transactions taking into account the execution of smart contracts. According to the authors it will allow one to realize new technologies and methods — the distributed register on the basis of the directed acyclic graph, calculation on edge and the hybrid scheme of construction of artificial intellectual systems — and all this together can be used for increase of efficiency of management of intellectual buildings. Actuality of the presented model is based on necessity and importance of translation of processes of management of life cycle of buildings and constructions in paradigm of Industry 4.0 and application for management of methods of an artificial intellect with universal introduction of independent artificial cognitive agents. Model novelty follows from cumulative consideration of the distributed calculations within the limits of the functional approach and hybrid paradigm of construction of artificial intellectual agents for management of intellectual buildings. The work is theoretical. The article will be interesting to scientists and engineers working in the field of automation of technological and industrial processes both within the limits of intellectual buildings, and concerning management of complex technical and social and technical systems as a whole.

  2. В работе предложен адаптивный алгоритм, моделирующий процесс формирования начальных поведенческих навыков на примере системы «глаза–манипулятор» анимата. Ситуация формирования начальных поведенческих навыков возникает, например, когда ребенок осваивает управление своими руками на основе понимания связи между исходно неидентифицированными пятнами на сетчатке своих глаз и положением реального предмета. Поскольку навыки управления телом не «вшиты» исходно в головной и спинной мозг на уровне инстинктов, то человеческому ребенку, как и большинству детенышей других млекопитающих, приходится осваивать эти навыки в режиме поискового поведения. Поисковое поведение начинается с метода проб и ошибок в чистом виде, затем его вклад постепенно уменьшается по мере освоения своего тела и окружающей среды. Поскольку образцов правильного поведения на этом этапе развития организм не имеет, то единственным способом выделения правильных навыков является положительное подкрепление при достижении цели. Ключевой особенностью предлагаемого алгоритма является фиксация в режиме импринтинга только завершающих действий, которые привели к успеху, или, что очень важно, привели к уже знакомой запечатленной ситуации, однозначно приводящей к успеху. Со временем непрерывная цепочка правильных действий удлиняется — максимально используется предыдущий позитивный опыт, а негативный «забывается» и не используется. Тем самым наблюдается постепенная замена случайного поиска целенаправленными действиями, что наблюдается и у реальных детенышей.

    Тем самым алгоритм способен устанавливать соответствие между закономерностями окружающего мира и «внутренними ощущениями», внутренним состоянием самого анимата. В предлагаемой модели анимата использовалось 2 типа нейросетей: 1) нейросеть NET1, на вход которой подавались текущие положения кисти руки и целевой точки, а на выходе — двигательные команды, направляющие «кисть» манипулятора анимата к целевой точке; 2) нейросеть NET2, которая на входе получала координаты цели и текущей координаты «кисти», а на выходе формировала значение вероятности того, что анимату уже «знакома» эта ситуация и он «знает», как на нее реагировать. Благодаря такой архитектуре у анимата есть возможность опираться на «опыт» нейросети в распознанных ситуациях, когда отклик от сети NET2 близок к 1, и, с другой стороны, запускать случайный поиск, когда опыта функционирования в этой области зрительного поля у анимата нет (отклик NET2 близок к 0).

    Tumanyan A.G., Bartsev S.I.
    Model of formation of primary behavioral patterns with adaptive behavior based on the combination of random search and experience
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 941-950

    In this paper, we propose an adaptive algorithm that simulates the process of forming the initial behavioral skills on the example of the system ‘eye-arm’ animat. The situation is the formation of the initial behavioral skills occurs, for example, when a child masters the management of their hands by understanding the relationship between baseline unidentified spots on the retina of his eye and the position of the real object. Since the body control skills are not ‘hardcoded’ initially in the brain and the spinal cord at the level of instincts, the human child, like most young of other mammals, it is necessary to develop these skills in search behavior mode. Exploratory behavior begins with trial and error and then its contribution is gradually reduced as the development of the body and its environment. Since the correct behavior patterns at this stage of development of the organism does not exist for now, then the only way to select the right skills is a positive reinforcement to achieve the objective. A key feature of the proposed algorithm is to fix in the imprinting mode, only the final action that led to success, and that is very important, led to the familiar imprinted situation clearly leads to success. Over time, the continuous chain is lengthened right action — maximum use of previous positive experiences and negative ‘forgotten’ and not used.

    Thus there is the gradual replacement of the random search purposeful actions that observed in the real young. Thus, the algorithm is able to establish a correspondence between the laws of the world and the ‘inner feelings’, the internal state of the animat. The proposed animat model was used 2 types of neural networks: 1) neural network NET1 to the input current which is fed to the position of the brush arms and the target point, and the output of motor commands, directing ‘brush’ manipulator animat to the target point; 2) neural network NET2 is received at the input of target coordinates and the current coordinates of the ‘brush’ and the output value is formed likelihood that the animat already ‘know’ this situation, and he ‘knows’ how to react to it. With this architecture at the animat has to rely on the ‘experience’ of neural networks to recognize situations where the response from NET2 network of close to 1, and on the other hand, run a random search, when the experience of functioning in this area of the visual field in animat not (response NET2 close to 0).

    Views (last year): 6. Citations: 2 (RSCI).
  3. Малыгина Н.В., Сурков П.Г.
    О моделировании преодоления водной преграды Rangifer tarandus L
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 895-910

    Видоспецифическими поведенческими признаками дикого северного оленя Rangifer tarandus L. традиционно признаны сезонные миграции и стадный инстинкт. В период миграций эти животные вынуждены преодолевать водные преграды. Особенности поведения рассматриваются как результат процесса селекции, когда среди множества стратегий выбрана единственно эволюционно-стабильная, определяющая репродукцию и биологическую выживаемость дикого северного оленя как вида. Ввиду эскалации промышленного освоения Арктики в настоящее время естественные процессы в популяциях диких северных оленей таймырской популяции происходят на фоне увеличения влияния негативных факторов, поэтому естественно возникла необходимость выявления этологических особенностей этих животных. В настоящей работе представлены результаты применения классических методов теории оптимального управления и дифференциальных игр к исследованию миграционных этограмм диких северных оленей при преодолении водных преград, в том числе крупных рек. На основе этологических особенностей этих животных и форм поведения стадо представляется в качестве управляемой динамической системы. Также оно делится на два класса особей: вожак и остальное стадо, для которых строятся свои модели, описывающие траектории их движения. В основу моделей закладываются гипотезы, представляющие собой математическую формализацию некоторых схем поведения животных. Данный подход позволил найти траекторию важенки с использованием методов теории оптимального управления, а при построении траекторий остальных особей — применить принцип управления с поводырем. Апробация полученных результатов, которые могут быть использованы в формировании общей «платформы» для систематического построения моделей адаптивного поведения и в качестве задела для фундаментальных разработок моделей когнитивной эволюции, проводится численно на модельном примере, использующем данные наблюдений на реке Верхняя Таймыра.

    Malygina N.V., Surkov P.G.
    On the modeling of water obstacles overcoming by Rangifer tarandus L
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 895-910

    Seasonal migrations and herd instinct are traditionally recognized as wild reindeer (Rangifer tarandus L.) species-specific behavioral signs. These animals are forced to overcome water obstacles during the migrations. Behaviour peculiarities are considered as the result of the selection process, which has chosen among the sets of strategies, as the only evolutionarily stable one, determining the reproduction and biological survival of wild reindeer as a species. Natural processes in the Taimyr population wild reindeer are currently occurring against the background of an increase in the influence of negative factors due to the escalation of the industrial development of the Arctic. That is why the need to identify the ethological features of these animals completely arose. This paper presents the results of applying the classical methods of the theory of optimal control and differential games to the wild reindeer study of the migration patterns in overcoming water barriers, including major rivers. Based on these animals’ ethological features and behavior forms, the herd is presented as a controlled dynamic system, which presents also two classes of individuals: the leader and the rest of the herd, for which their models, describing the trajectories of their movement, are constructed. The models are based on hypotheses, which are the mathematical formalization of some animal behavior patterns. This approach made it possible to find the trajectory of the important one using the methods of the optimal control theory, and in constructing the trajectories of other individuals, apply the principle of control with a guide. Approbation of the obtained results, which can be used in the formation of a common “platform” for the adaptive behavior models systematic construction and as a reserve for the cognitive evolution models fundamental development, is numerically carried out using a model example with observational data on the Werchnyaya Taimyra River.

  4. Юмаганов А.С., Агафонов А.А., Мясников В.В.
    Адаптивное управление сигналами светофоров на основе обучения с подкреплением, инвариантное к конфигурации светофорного объекта
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1253-1269

    В работе представлен метод адаптивного управления сигналами светофоров, инвариантный к конфигурации светофорного объекта. Предложенный метод использует одну модель нейронной сети для управления светофорами различных конфигураций, отличающихся как по числу контролируемых полос движения, так и по используемому набору фаз. Для описания пространства состояний используется как динамическая информация о состоянии транспортного потока, так и статические данные о конфигурации контролируемого перекрестка. Для повышения скорости обучения модели предлагается использовать эксперта, предоставляющего дополнительные данные для обучения модели. В качестве эксперта используется метод адаптивного управления, основанный на максимизации взвешенного потока транспортных средств через перекресток. Экспериментальные исследования разработанного метода, проведенные в системе микроскопического моделирования движения транспортных средств, подтвердили его работоспособность и эффективность. Была показана возможность применения разработанного метода в сценарии моделирования, не используемом в процессе обучения. Представлено сравнение предложенного метода с другими известными решениями задачи управления светофорным объектом, в том числе с методом, используемым в качестве эксперта. В большинстве сценариев разработанный метод показал лучший результат по критериям среднего времени движения и среднего времени ожидания. Преимущество над методом, используемым в качестве эксперта, в зависимости от исследуемого сценария составило от 2% до 12% по критерию среднего времени ожидания транспортных средств и от 1% до 7% по критерию среднего времени движения.

    Yumaganov A.S., Agafonov A.A., Myasnikov V.V.
    Reinforcement learning-based adaptive traffic signal control invariant to traffic signal configuration
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1253-1269

    In this paper, we propose an adaptive traffic signal control method invariant to the configuration of the traffic signal. The proposed method uses one neural network model to control traffic signals of various configurations, differing both in the number of controlled lanes and in the used traffic light control cycle (set of phases). To describe the state space, both dynamic information about the current state of the traffic flow and static data about the configuration of a controlled intersection are used. To increase the speed of model training and reduce the required amount of data required for model convergence, it is proposed to use an “expert” who provides additional data for model training. As an expert, we propose to use an adaptive control method based on maximizing the weighted flow of vehicles through an intersection. Experimental studies of the effectiveness of the developed method were carried out in a microscopic simulation software package. The obtained results confirmed the effectiveness of the proposed method in different simulation scenarios. The possibility of using the developed method in a simulation scenario that is not used in the training process was shown. We provide a comparison of the proposed method with other baseline solutions, including the method used as an “expert”. In most scenarios, the developed method showed the best results by average travel time and average waiting time criteria. The advantage over the method used as an expert, depending on the scenario under study, ranged from 2% to 12% according to the criterion of average vehicle waiting time and from 1% to 7% according to the criterion of average travel time.

  5. В работе решается задача установления зависимости потенциала пространственной селекции полезных и мешающих сигналов по критерию отношения «сигнал/помеха» от погрешности позиционирования устройств при диаграммообразовании по местоположению на базовой станции, оборудованной антенной решеткой. Конфигурируемые параметры моделирования включают планарную антенную решетку с различным числом антенных элементов, траекторию движения, а также точность определения местоположения по метрике среднеквадратического отклонения оценки координат устройств. В модели реализованы три алгоритма управления формой диаграммы направленности: 1) управление положением одного максимума и одного нуля; 2) управление формой и шириной главного лепестка; 3) адаптивная схема. Результаты моделирования показали, что первый алгоритм наиболее эффективен при числе элементов антенной решетки не более 5 и погрешности позиционирования не более 7 м, а второй алгоритм целесообразно использовать при числе элементов антенной решетки более 15 и погрешности позиционирования более 5 м. Адаптивное диаграммообразование реализуется по обучающему сигналу и обеспечивает оптимальную пространственную селекцию полезных и мешающих сигналов без использования данных о местоположении, однако отличается высокой сложностью аппаратной реализации. Скрипты разработанных моделей доступны для верификации. Полученные результаты могут использоваться при разработке научно обоснованных рекомендаций по управлению лучом в сверхплотных сетях радиодоступа миллиметрового диапазона пятого и последующих поколений.

    Fokin G.A., Volgushev D.B.
    Models for spatial selection during location-aware beamforming in ultra-dense millimeter wave radio access networks
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 195-216

    The work solves the problem of establishing the dependence of the potential for spatial selection of useful and interfering signals according to the signal-to-interference ratio criterion on the positioning error of user equipment during beamforming by their location at a base station, equipped with an antenna array. Configurable simulation parameters include planar antenna array with a different number of antenna elements, movement trajectory, as well as the accuracy of user equipment location estimation using root mean square error of coordinate estimates. The model implements three algorithms for controlling the shape of the antenna radiation pattern: 1) controlling the beam direction for one maximum and one zero; 2) controlling the shape and width of the main beam; 3) adaptive beamforming. The simulation results showed, that the first algorithm is most effective, when the number of antenna array elements is no more than 5 and the positioning error is no more than 7 m, and the second algorithm is appropriate to employ, when the number of antenna array elements is more than 15 and the positioning error is more than 5 m. Adaptive beamforming is implemented using a training signal and provides optimal spatial selection of useful and interfering signals without device location data, but is characterized by high complexity of hardware implementation. Scripts of the developed models are available for verification. The results obtained can be used in the development of scientifically based recommendations for beam control in ultra-dense millimeter-wave radio access networks of the fifth and subsequent generations.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"