All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Анализ основного уравнения физико-статистического подхода теории надежности технических систем
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 721-735Проведена верификация физико-статистического подхода теории надежности для простейших случаев, показавшая его правомочность. Представлено аналитическое решение одномерного основного уравнения физико-статистического подхода в предположении стационарной скорости деградации. С математической точки зрения это уравнение является известным уравнением непрерывности, где роль плотности вещества играет плотность функции распределения изделий в фазовом пространстве его характеристик, а роль скорости жидкости играет интенсивность (скорость) деградационных процессов. Последняя связывает общий формализм с конкретикой механизмов деградации. С помощью метода характеристик аналитически рассмотрены случаи постоянной по координате, линейной и квадратичной скоростей деградации. В первых двух случаях результаты соответствуют физической интуиции. При постоянной скорости деградации форма начального распределения сохраняется, а само оно равномерно сдвигается от центра. При линейной скорости деградации распределение либо сужается вплоть до узкого пика (в пределе сингулярного), либо расширяется, при этом максимум сдвигается на периферию с экспоненциально растущей скоростью. Форма распределения также сохраняется с точностью до параметров. Для начального нормального распределения аналитически получены координаты наибольшего значения максимума распределения при его возвратном движении.
В квадратичном случае формальное решение демонстрирует контринтуитивное поведение. Оно заключается в том, что решение однозначно определено лишь на части бесконечной полуплоскости, обращается в нуль вместе со всеми производными на границе и неоднозначно при переходе за границу. Если продолжить его на другую область в соответствии с аналитическим решением, то оно имеет двухгорбый вид, сохраняет количество вещества и, что лишено физического смысла, периодично во времени. Если продолжить его нулем, то нарушается свойство консервативности. Аномальности квадратичного случая дается объяснение, хотя и нестрогое, через аналогию движения материальной точки с ускорением, пропорциональным квадрату скорости. Здесь мы имеем дело с математическим курьезом. Для всех случаев приведены численные расчеты. Дополнительно рассчитываются энтропия вероятностного распределения и функция надежности, а также прослеживается их корреляционная связь.
Ключевые слова: деградация, надежность, наносистема, физико-статистический подход, энтропия, уравнение непрерывности.
Analysis of the basic equation of the physical and statistical approach within reliability theory of technical systems
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 721-735Verification of the physical-statistical approach within reliability theory for the simplest cases was carried out, which showed its validity. An analytical solution of the one-dimensional basic equation of the physicalstatistical approach is presented under the assumption of a stationary degradation rate. From a mathematical point of view this equation is the well-known continuity equation, where the role of density is played by the density distribution function of goods in its characteristics phase space, and the role of fluid velocity is played by intensity (rate) degradation processes. The latter connects the general formalism with the specifics of degradation mechanisms. The cases of coordinate constant, linear and quadratic degradation rates are analyzed using the characteristics method. In the first two cases, the results correspond to physical intuition. At a constant rate of degradation, the shape of the initial distribution is preserved, and the distribution itself moves equably from the zero. At a linear rate of degradation, the distribution either narrows down to a narrow peak (in the singular limit), or expands, with the maximum shifting to the periphery at an exponentially increasing rate. The distribution form is also saved up to the parameters. For the initial normal distribution, the coordinates of the largest value of the distribution maximum for its return motion are obtained analytically.
In the quadratic case, the formal solution demonstrates counterintuitive behavior. It consists in the fact that the solution is uniquely defined only on a part of an infinite half-plane, vanishes along with all derivatives on the boundary, and is ambiguous when crossing the boundary. If you continue it to another area in accordance with the analytical solution, it has a two-humped appearance, retains the amount of substance and, which is devoid of physical meaning, periodically over time. If you continue it with zero, then the conservativeness property is violated. The anomaly of the quadratic case is explained, though not strictly, by the analogy of the motion of a material point with an acceleration proportional to the square of velocity. Here we are dealing with a mathematical curiosity. Numerical calculations are given for all cases. Additionally, the entropy of the probability distribution and the reliability function are calculated, and their correlation is traced.
-
Методы и задачи кинетического подхода для моделирования биологических структур
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.
Ключевые слова: неравновесная открытая система, энтропия, кинетические уравнения, старение биосистем.
Methods and problems in the kinetic approach for simulating biological structures
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 851-866Views (last year): 31.The biological structure is considered as an open nonequilibrium system which properties can be described on the basis of kinetic equations. New problems with nonequilibrium boundary conditions are introduced. The nonequilibrium distribution tends gradually to an equilibrium state. The region of spatial inhomogeneity has a scale depending on the rate of mass transfer in the open system and the characteristic time of metabolism. In the proposed approximation, the internal energy of the motion of molecules is much less than the energy of translational motion. Or in other terms we can state that the kinetic energy of the average blood velocity is substantially higher than the energy of chaotic motion of the same particles. We state that the relaxation problem models a living system. The flow of entropy to the system decreases in downstream, this corresponds to Shrödinger’s general ideas that the living system “feeds on” negentropy. We introduce a quantity that determines the complexity of the biosystem, more precisely, this is the difference between the nonequilibrium kinetic entropy and the equilibrium entropy at each spatial point integrated over the entire spatial region. Solutions to the problems of spatial relaxation allow us to estimate the size of biosystems as regions of nonequilibrium. The results are compared with empirical data, in particular, for mammals we conclude that the larger the size of animals, the smaller the specific energy of metabolism. This feature is reproduced in our model since the span of the nonequilibrium region is larger in the system where the reaction rate is shorter, or in terms of the kinetic approach, the longer the relaxation time of the interaction between the molecules. The approach is also used for estimation of a part of a living system, namely a green leaf. The problems of aging as degradation of an open nonequilibrium system are considered. The analogy is related to the structure, namely, for a closed system, the equilibrium of the structure is attained for the same molecules while in the open system, a transition occurs to the equilibrium of different particles, which change due to metabolism. Two essentially different time scales are distinguished, the ratio of which is approximately constant for various animal species. Under the assumption of the existence of these two time scales the kinetic equation splits in two equations, describing the metabolic (stationary) and “degradative” (nonstationary) parts of the process.
-
Репрессилятор с запаздывающей экспрессией генов. Часть II. Стохастическое описание
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 587-609Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую малоразмерную цепь из трех генов: $lacI$, $\lambda cI$ и $tetR$, которые в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. Ранее в работе [Брацун и др., 2018] была предложена математическая модель запаздывающего репрессилятора и изучены ее свойства в рамках детерминистского описания. Предполагается, что запаздывание может быть как естественным, т. е. возникать во время процессов транскрипции/трансляции в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов генной инженерии. Данная работа посвящена стохастическому описанию динамических процессов в запаздывающем репрессиляторе, которое является важным дополнением детерминистского анализа из-за сильных флуктуаций и небольшого числа молекул, принимающих обычно участие в генной регуляции. Стохастическое исследование было проведено численно с помощью алгоритма Гиллеспи, модифицированного для систем с запаздыванием. Приводятся описание алгоритма, его программная реализация и результаты тестовых расчетов для одногенного авторепрессора с запаздыванием. При исследовании репрессилятора обнаружено, что стохастическое описание в ряде случаев дает новую информацию о поведении системы, которая не сводится к детерминистской динамике даже при усреднении по большому числу реализаций. В подкритической области, где детерминистский анализ предсказывает абсолютную устойчивость системы, было обнаружено возбуждение квазирегулярных колебаний, вызываемых нелинейным взаимодействием шума и запаздывания. Выше порога возникновения неустойчивости обнаружено спонтанное изменение фазы колебаний из-за внезапной временной деградации этих колебаний. Ранее в детерминистском анализе был обнаружен долгоживущий переходный режим, который отвечает движению фазовой траектории по медленному многообразию и отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Показано, что в стохастическом случае переход к кооперативному режиму работы генов репрессилятора происходит в среднем на два порядка быстрее. Построено распределение вероятности соскока фазовой траектории с медленного многообразия и определено наиболее вероятное время такого перехода. Обсуждается влияние внутреннего шума химических реакций на динамические свойства репрессилятора.
Repressilator with time-delayed gene expression. Part II. Stochastic description
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 587-609The repressilator is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements $lacI$, $\lambda cI$ and $tetR$, which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In our previous paper [Bratsun et al., 2018], we proposed a mathematical model of a delayed repressillator and studied its properties within the framework of a deterministic description. We assume that delay can be both natural, i.e. arises during the transcription / translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using gene engineering technologies. In this work, we apply the stochastic description of dynamic processes in a delayed repressilator, which is an important addition to deterministic analysis due to the small number of molecules involved in gene regulation. The stochastic study is carried out numerically using the Gillespie algorithm, which is modified for time delay systems. We present the description of the algorithm, its software implementation, and the results of benchmark simulations for a onegene delayed autorepressor. When studying the behavior of a repressilator, we show that a stochastic description in a number of cases gives new information about the behavior of a system, which does not reduce to deterministic dynamics even when averaged over a large number of realizations. We show that in the subcritical range of parameters, where deterministic analysis predicts the absolute stability of the system, quasi-regular oscillations may be excited due to the nonlinear interaction of noise and delay. Earlier, we have discovered within the framework of the deterministic description, that there exists a long-lived transient regime, which is represented in the phase space by a slow manifold. This mode reflects the process of long-term synchronization of protein pulsations in the work of the repressilator genes. In this work, we show that the transition to the cooperative mode of gene operation occurs a two order of magnitude faster, when the effect of the intrinsic noise is taken into account. We have obtained the probability distribution of moment when the phase trajectory leaves the slow manifold and have determined the most probable time for such a transition. The influence of the intrinsic noise of chemical reactions on the dynamic properties of the repressilator is discussed.
-
Кинетическая модель репарации двунитевых разрывов ДНК в первичных фибробластах человека при действии редкоионизирующего излучения с различной мощностью дозы
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 159-176В настоящей работе представлены результаты кинетического моделирования индукции и репарации двунитевых разрывов ДНК, а также формирования скоплений (фокусов) фосфорилированного гистона H2AX ($\gamma$-H2AX) и белка Rad 51 в местах образования двунитевых разрывов, индуцированных воздействием редкоионизирующего излучения с различной мощностью и продолжительностью, в первичных фибробластах человека. Модель описывает основные механизмы репарации двунитевых разрывов: НГСК (негомологичное соединение концов) и ГР (гомологическая рекомбинация) и учитывает взаимодействия ряда белков (ДНК-ПКкс, ATM, Ku70/80, XRCC1, XRCC4, Rad51, ФРА и др.), участвующих в репарации двунитевых разрывов ДНК, на основе закона действующих масс и кинетики Михаэлиса-Ментен. Для тренировки и подтверждения статистической достоверности модели были использованы литературные данные по кинетике репарации двунитевых разрывов, а также данные по кинетике формирования и деградации фокусов белков репарации $\gamma$-H2AX и Rad51 в местах репарации двунитевых разрывов ДНК после облучения с различной мощностью дозы, полученные ранее нашим коллективом.
Ключевые слова: двунитевые разрывы ДНК, репарация ДНК, кинетическое моделирование, редкоионизирующее излучение, мощность дозы излучения.
Kinetic model of DNA double-strand break repair in primary human fibroblasts exposed to low-LET irradiation with various dose rates
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 159-176Views (last year): 4. Citations: 3 (RSCI).Here we demonstrate the results of kinetic modeilng of DNA double-strand breaks induction and repair and phosphorilated histone H2AX ($\gamma$-H2AX) and Rad51 foci formation in primary human fibroblasts exposed to low-LET ionizing radiation (IR). The model describes two major paths of DNA double-strand breaks repair: non-homologous end joining (NHEJ) and homologous recombination (HR) and considers interactions between DNA and several repair proteins (DNA-PKcs, ATM, Ku70/80, XRCC1, XRCC4, Rad51, RPA, etc.) using mass action equations and Michaelis–Menten kinetics. Experimental data on DNA rejoining kinetics and $\gamma$-H2AX and Rad51 foci formation in vicinity of double strand breaks in primary human fibroblasts exposed to low-LET IR with various dose rates and exposure times was utilized for training and statistical validation of the model.
-
Стоимостная оценка машин при случайном процессе их деградации и досрочной продажи
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 797-815Исследуется модель процесса использования машин, учитывающая вероятностный характер процесса их эксплуатации и продажи. В ней учитываются возможность случайных скрытых отказов, после которых состояние машин ухудшается скачком, а также случайно возникающая необходимость досрочной (до окончания срока службы) продажи машины, требующей, вообще говоря, случайного времени. Модель ориентирована на оценку рыночной стоимости и сроков службы машин в соответствии с международными стандартами оценки. Строго говоря, рыночная стоимость подержанной машины зависит от ее технического состояния, однако на практике стоимость машины устанавливают с учетом только ее возраста, поскольку общепринятых измерителей технического состояния машин пока еще не предложено. Тем самым стоимость подержанной машины принимается на уровне средней стоимости аналогичных машин соответствующего возраста. В этих целях оценщики используют зависимости стоимости машин от возраста, не всегда обоснованные и не учитывающие ни деградации машин, ни вероятностного характера процесса их использования. Предлагаемая модель основана на принципе ожидания выгод. В ней состояние машины характеризуется интенсивностью приносимых ею выгод. Машина подвергается сложному пуассоновскому потоку отказов, после каждого из которых состояние машины скачком ухудшается и может даже оказаться предельным. Возникают также ситуации, исключающие дальнейшее использование машины ее владельцем. В таких ситуациях владелец выставляет машину на продажу до окончания срока ее службы (досрочно), причем продажа требует случайного времени. Модель позволяет учесть влияние таких ситуаций и построить аналитическую зависимость, связывающую рыночную стоимость машины с ее состоянием, и рассчитать средние коэффициенты изменения рыночной стоимости машин с возрастом. При этом удается также учесть влияние инфляции и утилизационной стоимости машин. Мы установили, что опасность досрочных продаж существенно влияет на сроки службы и стоимость новых и подержанных машин. В то же время зависимости стоимости машин от возраста в значительной степени определяются коэффициентом вариации срока службы машин. Полученные результаты позволяют получать более обоснованные оценки рыночной стоимости машин, в том числе для целей системы национальных счетов.
Ключевые слова: машины и оборудование, пуассоновский процесс, деградация, рыночная стоимость, принцип ожидания выгод, срок службы, срок владения, досрочная продажа, инфляция.
Valuation of machines at the random process of their degradation and premature sales
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 797-815The model of the process of using machinery and equipment is considered, which takes into account the probabilistic nature of the process of their operation and sale. It takes into account the possibility of random hidden failures, after which the condition of the machine deteriorates abruptly, as well as the randomly arising need for premature (before the end of its service life) sale of the machine, which requires, generally speaking, random time. The model is focused on assessing the market value and service life of machines in accordance with International Valuation Standards. Strictly speaking, the market value of a used machine depends on its technical condition, but in practice, appraisers only take into account its age, since generally accepted measures of the technical condition of machines do not yet exist. As a result, the market value of a used machine is assumed to be equal to the average market value of similar machines of the corresponding age. For these purposes, appraisers use coefficients that reflect the influence of the age of machines on their market value. Such coefficients are not always justified and do not take into account either the degradation of the machine or the probabilistic nature of the process of its use. The proposed model is based on the anticipation of benefits principle. In it, we characterize the state of the machine by the intensity of the benefits it brings. The machine is subjected to a complex Poisson failure process, and after failure its condition abruptly worsens and may even reach its limit. Situations also arise that preclude further use of the machine by its owner. In such situations, the owner puts the machine up for sale before the end of its service life (prematurely), and the sale requires a random timing. The model allows us to take into account the influence of such situations and construct an analytical relationship linking the market value of a machine with its condition, and calculate the average coefficients of change in the market value of machines with age. At the same time, it is also possible to take into account the influence of inflation and the scrap cost of the machine. We have found that the rate of prematurely sales has a significant impact on the cost of new and used machines. The model also allows us to take into account the influence of inflation and the scrap value of the machine. We have found that the rate of premature sales has a significant impact on the service life and market value of new and used machines. At the same time, the dependence of the market value of machines on age is largely determined by the coefficient of variation of the service life of the machines. The results obtained allow us to obtain more reasonable estimates of the market value of machines, including for the purposes of the system of national accounts.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"