Результаты поиска по 'динамика ДНК':
Найдено статей: 18
  1. Рамазанов Р.Р., Соколов П.А.
    Молекулярно-динамическое исследование комплексов ДНК-аптамера с АМФ и ГМФ
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1191-1203

    В данной работе при помощи метода молекулярной динамики проводится сравнительное исследование конформационной стабильности ДНК-аптамера к аденозиновым производным в свободном состоянии и в комплексе с молекулами АМФ и ГМФ. Показано, что в свободном состоянии структура внутренней петли шпильки ДНК-аптамера за счет особой упаковки гуанинов закрывает полость сайта связывания от внешних лигандов, при этомв озникает условие специфичного отбора молекул аденозинового производного в сравнении с гуанином. В дополнение к имеющимся в литературе выявлены новые факторы стабилизации комплекса АМФ и аптамера — водородные связи между О3’ атома рибозы лигандов с кислородом ближайшей фосфатной группы. Также показано, что гуанины, которые образуют водородные связи с АМФ внутри сайта связывания, дополнительно стабилизируются водородными связями с противолежащими по цепи фосфатными группами. Предложенная схема качественно соответствует экспериментальным данным, согласно которым аптамер в растворе обретает конформацию шпильки с формированием сайта связывания, при этом образованный сайт проявляет высокую специфичность при взаимодействии только с аденозиновыми производными.

    Ramazanov R.R., Sokolov P.A.
    Molecular dynamics study of complexes of a DNA aptamer with AMP and GMP
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1191-1203

    This study is devoted to a comparative study of the conformational stability of the DNA aptamer to adenosine derivatives in a free state and in a complex with AMP and HMP molecules by use of molecular dynamics. It was shown that, in the free state, the structure of the inner loop of the DNA aptamer hairpin, due to the special packing of guanines, closes the cavity of the binding site from external ligands, and the condition for the specific selection of adenosine derivatives in comparison with guanine arises. New stabilization factors of the AMP and aptamer complex have been revealed — hydrogen bonds between the O3’ of the ribose atom of the ligands with the oxygen of the nearest phosphate group. It was also shown that guanines, which form hydrogen bonds with AMP within the binding site, are additionally stabilized by hydrogen bonds with phosphate groups opposing along the chain. The proposed scheme is in qualitative agreement with the experimental data, according to which the aptamer in solution acquires a hairpin conformation with the formation of a binding site, while the formed site exhibits high specificity when interacting only with adenosine derivatives.

  2. Нечипуренко Ю.Д., Нечипуренко Д.Ю., Ильичева И.А., Головкин М.В., Панченко Л.А., Полозов Р.В., Гроховский С.Л.
    Конформационно-динамические свойства ДНК и подходы к физическому картированию генома
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 419-428

    Ранее нами был предложен и развит метод исследования ДНК, основанный на расщеплении двунитевых фрагментов ДНК под действием ультразвука. Были получены относительные частоты расщепления фосфодиэфирной связи во всех 16 динуклеотидах. Увеличение базы проанализированных данных до 20 тысяч нуклеотидов позволил получить относительные частоты расщепления для 256 тетрануклеотидов. Эти величины количественно характеризуют влияние последовательности нуклеотидов на конформационную динамику сахарофосфатного остова. Сейчас известны определённые типы гетерогенности сахарофосфатного остова ДНК, связанные с расщеплением ДНК различными химическими агентами или ДНКазой 1. Гетерогенность свойств молекулы ДНК может быть использована для физического картирования генома, то есть определения участков, отвечающих за регуляцию генетический экспрессии.

    Nechipurenko Y.D., Nechipurenko D.Y., Il’icheva I.A., Golovkin M.V., Panchenko L.A., Polozov R.V., Grokhovsky S.L.
    DNA conformational dynamics: approach to the physical mapping of genome
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 419-428

    Recently we have developed a new method for studying DNA based on ultrasound - induced cleavage of DNA sugar-phosphate backbone. Relative cleavage rates of the phosphodiester bonds in all 16 dinucleotides have been determined. The increased amount of data sampling (of more than 20 000 nucleotides) made it also possible to obtain cleavage rates in all 256 possible tetranucleotides. These values quantitatively characterize sequence effects on conformational dynamics of DNA sugar phosphate backbone. Same type of DNA heterogeneity have been discovered and studied using its chemical cleavage induced by various chemical agents and DNAse I. The presence of essential heterogeneity in structural properties of DNA might be a key for physical mapping of the genomes, i.e. determining the structural profiles being responsible for DNA recognition by gene expression regulation machinery.

    Views (last year): 2. Citations: 2 (RSCI).
  3. Гриневич А.А., Рясик А.А., Якушевич Л.В.
    Движение открытых состояний ДНК под действием случайной силы
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1295-1307

    Известно, что в нативном состоянии молекула ДНК всегда содержит некоторое количество локально расплетенных участков, часто называемых открытыми состояниями ДНК. Считается, что эти состояния играют важную роль в ДНК-белковом узнавании, и изучение их динамики может пролить дополнительный свет на механизмы регуляции транскрипции и репликации. В этой статье мы рассматриваем влияние термостата на движение открытых состояний в искусственной последовательности, состоящей из четырех однородных областей. Мы построим энергетический профиль этой последовательности и исследуем траектории движения открытых состояний в этом профиле под действием случайной силы.

    Grinevich A.A., Ryasik A.A., Yakushevich L.V.
    Motion of DNA open states influenced by random force
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1295-1307

    It is known that in the native state the DNA molecule always contains some amount of locally unwound regions, often called the open states of DNA. It is believed that these states play an important role in DNA-protein recognition and that the study of the open states dynamics may shed further light on the mechanisms of regulation of transcription and replication. In this paper we consider the effect of the thermostat on the movement of the open states in the artificial sequence consisting of four homogeneous regions. We construct the energetic profile of the sequence and investigate the trajectories of the movement of the open states under the action of a random force.

    Views (last year): 3.
  4. Якушевич Л.В.
    Электронный аналог однородной ДНК
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 789-798

    Известно, что внутренняя подвижность молекул ДНК играет важную роль в функционировании этих молекул. Этим объясняется большой интерес исследователей к изучению особенностей внутренней динамики ДНК. Сложность, трудоемкость и дороговизна проведения исследований в этой области стимулируют поиск и создание более простых физических аналогов, удобных для имитации различных динамических режимов, возможных в ДНК. Одно из направлений такого поиска связано с использованием механического аналога ДНК — цепочки связанных маятников. В этой модели маятники имитируют азотистые основания, горизонтальная нить, на которой подвешены маятники, имитирует сахаро-фосфатную цепочку, а гравитационное поле имитирует поле, наводимое второй нитью ДНК. Простота и наглядность — основные достоинства механического аналога. Однако модель становится слишком громоздкой в тех случаях, когда необходимо моделировать длинные (более тысячи пар оснований) последовательности ДНК. Другое направление связано с использованием электронного аналога молекулы ДНК, который лишен недостатков механической модели. В данной работе мы исследуем возможность использования в качестве электронного аналога джозефсоновскую линию. Мы рассчитали коэффициенты прямых и непрямых преобразований для простого случая однородной, синтетической ДНК, последовательность которой содержит только аденины. Внутренняя подвижности молекулы ДНК моделировалась уравнением синус-Гордона для угловых колебаний азотистых оснований, принадлежащих одной из двух полинуклеотидных цепей ДНК. При этом вторая полинуклеотидная цепь моделировалась как некоторое усредненное поле, в котором происходят эти колебания. Преобразование, позволяющее перейти от ДНК к электронному аналогу, было получено двумя способами. Первый включает две стадии: (1) переход от ДНК к механическому аналогу (цепочке связанных маятников) и (2) переход от механического аналога к электронному (линии Джозефсона). Второй способ прямой. Он включает только одну стадию — прямой переход от ДНК к электронному аналогу.

    Yakushevich L.V.
    Electronic analogue of DNA
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 789-798

    It is known that the internal mobility of DNA molecules plays an important role in the functioning of these molecules. This explains the great interest of researchers in studying the internal dynamics of DNA. Complexity, laboriousness and high cost of research in this field stimulate the search and creation of simpler physical analogues, convenient for simulating the various dynamic regimes possible in DNA. One of the directions of such a search is connected with the use of a mechanical analogue of DNA — a chain of coupled pendulums. In this model, pendulums imitate nitrous bases, horizontal thread on which pendulums are suspended, simulates a sugarphosphate chain, and gravitational field simulates a field induced by a second strand of DNA. Simplicity and visibility are the main advantages of the mechanical analogue. However, the model becomes too cumbersome in cases where it is necessary to simulate long (more than a thousand base pairs) DNA sequences. Another direction is associated with the use of an electronic analogue of the DNA molecule, which has no shortcomings of the mechanical model. In this paper, we investigate the possibility of using the Josephson line as an electronic analogue. We calculated the coefficients of the direct and indirect transformations for the simple case of a homogeneous, synthetic DNA, the sequence of which contains only adenines. The internal mobility of the DNA molecule was modeled by the sine-Gordon equation for angular vibrations of nitrous bases belonging to one of the two polynucleotide chains of DNA. The second polynucleotide chain was modeled as a certain average field in which these oscillations occur. We obtained the transformation, allowing the transition from DNA to an electronic analog in two ways. The first includes two stages: (1) the transition from DNA to the mechanical analogue (a chain of coupled pendulums) and (2) the transition from the mechanical analogue to the electronic one (the Josephson line). The second way is direct. It includes only one stage — a direct transition from DNA to the electronic analogue.

    Views (last year): 9.
  5. Гриневич А.А., Якушевич Л.В.
    О компьютерных экспериментах Касмана
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 503-513

    В 2007 году Касман провел серию оригинальных компьютерных экспериментов с кинками уравнения синус-Гордона, движущимися вдоль искусственных последовательностей ДНК. Были рассмотрены две последовательности. Каждая состояла из двух частей, разделенных границей. Левая часть первой из последовательностей содержала повторяющиеся триплеты TTA, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты CGC, кодирующие аргинины. Во второй последовательности левая часть содержала повторяющиеся триплеты CTG, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты AGA, кодирующие аргинины. При моделировании движения кинка в этих последовательностях был обнаружен интересный эффект. Оказалось, что кинк, движущийся в одной из последовательностей, останавливался, не достигнув конца, а затем «отскакивал», как будто ударялся об стенку. В то же время в другой последовательности движение кинка не прекращалось в течение всего времени проведения эксперимента. В этих компьютерных экспериментах, однако, использовалась простая модель ДНК, предложенная Салерно. Она учитывает различия во взаимодействиях комплементарных оснований внутри пар, но пренебрегает различием в моментах инерции азотистых оснований и расстояниях между центрами масс оснований и сахарно-фосфатной цепочкой. Вопрос о том, сохранится ли эффект Касмана при использовании более точных моделей ДНК, до сих пор остается открытым. В настоящей работе мы исследуем эффект Касмана на основе более точной модели ДНК, которая учитывает оба эти различия. Мы получили энергетические профили последовательностей Касмана и построили траектории движения кинков, запущенных в этих последовательностях при разных начальных значениях энергии. Результаты наших исследований подтвердили существование эффекта Касмана, но только в ограниченном интервале начальных значений энергии кинков и при определенном направлении движения кинков. В других случаях этот эффект не наблюдался. Мы обсудили, какие из исследованных последовательностей энергетически были более предпочтительны для возбуждения и распространения кинков.

    Grinevich A.A., Yakushevich L.V.
    On the computer experiments of Kasman
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 503-513

    In 2007 Kasman conducted a series of original computer experiments with sine-Gordon kinks moving along artificial DNA sequences. Two sequences were considered. Each consisted of two parts separated by a boundary. The left part of the first sequence contained repeating TTA triplets that encode leucines, and the right part contained repeating CGC triplets that encode arginines. In the second sequence, the left part contained repeating CTG triplets encoding leucines, and the right part contained repeating AGA triplets encoding arginines. When modeling the kink movement, an interesting effect was discovered. It turned out that the kink, moving in one of the sequences, stopped without reaching the end of the sequence, and then “bounced off” as if he had hit a wall. At the same time, the kink movement in the other sequence did not stop during the entire time of the experiment. In these computer experiments, however, a simple DNA model proposed by Salerno was used. It takes into account differences in the interactions of complementary bases within pairs, but does not take into account differences in the moments of inertia of nitrogenous bases and in the distances between the centers of mass of the bases and the sugar-phosphate chain. The question of whether the Kasman effect will continue with the use of more accurate DNA models is still open. In this paper, we investigate the Kasman effect on the basis of a more accurate DNA model that takes both of these differences into account. We obtained the energy profiles of Kasman's sequences and constructed the trajectories of the motion of kinks launched in these sequences with different initial values of the energy. The results of our investigations confirmed the existence of the Kasman effect, but only in a limited interval of initial values of the kink energy and with a certain direction of the kinks movement. In other cases, this effect did not observe. We discussed which of the studied sequences were energetically preferable for the excitation and propagation of kinks.

    Views (last year): 23.
  6. Якушевич Л.В.
    От однородного к неоднородному электронному аналогу ДНК
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407

    В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.

    Yakushevich L.V.
    From homogeneous to inhomogeneous electronic analogue of DNA
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1397-1407

    In this work, the problem of constructing an electronic analogue of heterogeneous DNA is solved with the help of the methods of mathematical modeling. Electronic analogs of that type, along with other physical models of living systems, are widely used as a tool for studying the dynamic and functional properties of these systems. The solution to the problem is based on an algorithm previously developed for homogeneous (synthetic) DNA and modified in such a way that it can be used for the case of inhomogeneous (native) DNA. The algorithm includes the following steps: selection of a model that simulates the internal mobility of DNA; construction of a transformation that allows you to move from the DNA model to its electronic analogue; search for conditions that provide an analogy of DNA equations and electronic analogue equations; calculation of the parameters of the equivalent electrical circuit. To describe inhomogeneous DNA, the model was chosen that is a system of discrete nonlinear differential equations simulating the angular deviations of nitrogenous bases, and Hamiltonian corresponding to these equations. The values of the coefficients in the model equations are completely determined by the dynamic parameters of the DNA molecule, including the moments of inertia of nitrous bases, the rigidity of the sugar-phosphate chain, and the constants characterizing the interactions between complementary bases in pairs. The inhomogeneous Josephson line was used as a basis for constructing an electronic model, the equivalent circuit of which contains four types of cells: A-, T-, G-, and C-cells. Each cell, in turn, consists of three elements: capacitance, inductance, and Josephson junction. It is important that the A-, T-, G- and C-cells of the Josephson line are arranged in a specific order, which is similar to the order of the nitrogenous bases (A, T, G and C) in the DNA sequence. The transition from DNA to an electronic analog was carried out with the help of the A-transformation which made it possible to calculate the values of the capacitance, inductance, and Josephson junction in the A-cells. The parameter values for the T-, G-, and C-cells of the equivalent electrical circuit were obtained from the conditions imposed on the coefficients of the model equations and providing an analogy between DNA and the electronic model.

  7. Гриневич А.А., Рясик А.А., Якушевич Л.В.
    Динамические свойства полинуклеотидной цепи, состоящей из двух неодинаковых однородных последовательностей, разделенных границей
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 241-253

    Для исследования динамики неоднородной полинуклеотидной цепочки ДНК была использована упрощенная Y-модель с нулевым диссипативным членом. На основе этой модели с помощью численных методов были проведены расчеты, демонстрирующие поведение нелинейного конформационного возмущения (кинка), распространяющегося вдоль неоднородной полинуклеотидной цепи, состоящей из двух разных однородных последовательностей нуклеотидов. Как показал численный анализ, нелинейное возмущение в виде кинка, распространяющееся вдоль рассматриваемой модельной молекулы ДНК, может вести себя тремя разными способами. При достижении границы между двумя однородными последовательностями, состоящими из разных типов оснований, кинк может: а) отразиться, б) пройти границу с ускорением (увеличить скорость), в) пройти границу с замедлением (уменьшить скорость).

    Grinevich A.A., Ryasik A.A., Yakushevich L.V.
    The dynamics of polynucleotide chain consisting of two different homogeneous sequences, divided by interface
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 241-253

    To research dynamics of inhomogeneous polynucleotide DNA chain the Y-model with no dissipation term was used. Basing on this model using numerical methods calculations were carried out, which have shown the behaviour of nonlinear conformational excitation (kink), spreading along the inhomogeneous polynucleotide chain, consisting of two different homogeneous nucleotide sequences. As numerical analysis shows there are three ways of behaviour of the nonlinear kink excitation spreading along the DNA chain. After reaching the interface between two homogeneous sequences consisting of different types of bases kink can a) reflect, b) pass the interface with acceleration (increase its velocity), c) pass the interface with deceleration (decrease its velocity).

    Views (last year): 1. Citations: 3 (RSCI).
  8. Краснобаева Л.А., Волков И.А., Якушевич Л.В.
    Динамика кинков, активированных в генах ADRB2, NOS1 и IL-5
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 391-399

    В данной работе метод концентраций применен к геному человека. Рассчитаны динамические характеристики трех различных генов (ADRB2, NOS1, IL-5) с установленным влиянием на течение бронхиальной астмы.

    Krasnobaeva L.A., Volkov I.A., Yakushevich L.V.
    Dynamics of kinks activated in the genes ADRB2, NOS1 and IL-5
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 391-399

    In this paper the method of concentrations is applied to the human genome. The dynamical characteristics of three different genes (ADRB2, NOS1, IL-5) with the established effect on bronchial asthma.

    Views (last year): 1. Citations: 2 (RSCI).
Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"