All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Движение кинка под действием переменной внешней силы в среде с диссипацией
Компьютерные исследования и моделирование, 2009, т. 1, № 3, с. 263-271Исследованы аналитические зависимости от времени скорости кинка (односолитонного решения уравнения синус-Гордона), движущегося под действием однородной нестационарной внешней силы в среде с диссипацией. Рассмотрены случаи гармонически зависящей от времени внешней силы и силы, зависящей от времени ступенчатым образом.
Kink motion by ac external force and dissipation
Computer Research and Modeling, 2009, v. 1, no. 3, pp. 263-271Views (last year): 2. Citations: 3 (RSCI).We consider SG-kink motion under the ac external force and dissipation assuming that kink shape conserves, and the kink velocity is changing in time. External forces are harmonically dependent upon time and are considered as step functions.
-
О возбуждении солитонов при взаимодействии кинков уравнения синус-Гордона с притягивающей примесью
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 509-520Исследованы аналитически и численно структура и свойства локализованных двух- и трех-кинковых решений уравнения синус-Гордона, возбуждаемых в области притягивающей примеси. Рассмотрены случаи одиночной и двойной пространственно протяженной примеси.
Excitement of solitons in the interaction of kinks of sine-Gordon equation with attracting impurity
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 509-520Citations: 5 (RSCI).We investigate analytically and numerically the structure and properties of localized two- and three-kink solutions of the sine-Gordon equation, which are excited in the region of the attracting impurity. We have considered cases of single and double spatially extended impurity.
-
Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.
Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.
-
Коллективное влияние примесей на динамику кинков уравнения синус-Гордона
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 403-412С помощью численных методов исследована динамика кинков модифицированного уравнения синус-Гордона в модели с локализованной пространственной модуляцией периодического потенциала (или примесью). Рассмотрен случай наличия двух одинаковых примесей. Показано, что возможно наблюдение коллективных эффектов влияния примесей, которые сильно зависят от расстояния между ними. Продемонстрировано наличие определенного критического значения расстояния между примесями, которое приводит к двум качественно различным сценариям динамического поведения кинка.
Collective influence of impurities on the dynamics of kinks of modified sine-Gordon equation
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 403-412Views (last year): 1. Citations: 3 (RSCI).We investigated numerically the dynamics of kinks of modified sine-Gordon equation in the model with localized spatial modulation of a periodic potential (or impurity). We considered the case of two identical impurities. We showed the possibility of collective effects of the influence of impurities, which are heavily dependent on the distance between them. We demonstrated the existence of a certain critical value of the distance between impurities, which has two qualitatively different scenarios of the dynamic behavior of kink.
-
О компьютерных экспериментах Касмана
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 503-513В 2007 году Касман провел серию оригинальных компьютерных экспериментов с кинками уравнения синус-Гордона, движущимися вдоль искусственных последовательностей ДНК. Были рассмотрены две последовательности. Каждая состояла из двух частей, разделенных границей. Левая часть первой из последовательностей содержала повторяющиеся триплеты TTA, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты CGC, кодирующие аргинины. Во второй последовательности левая часть содержала повторяющиеся триплеты CTG, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты AGA, кодирующие аргинины. При моделировании движения кинка в этих последовательностях был обнаружен интересный эффект. Оказалось, что кинк, движущийся в одной из последовательностей, останавливался, не достигнув конца, а затем «отскакивал», как будто ударялся об стенку. В то же время в другой последовательности движение кинка не прекращалось в течение всего времени проведения эксперимента. В этих компьютерных экспериментах, однако, использовалась простая модель ДНК, предложенная Салерно. Она учитывает различия во взаимодействиях комплементарных оснований внутри пар, но пренебрегает различием в моментах инерции азотистых оснований и расстояниях между центрами масс оснований и сахарно-фосфатной цепочкой. Вопрос о том, сохранится ли эффект Касмана при использовании более точных моделей ДНК, до сих пор остается открытым. В настоящей работе мы исследуем эффект Касмана на основе более точной модели ДНК, которая учитывает оба эти различия. Мы получили энергетические профили последовательностей Касмана и построили траектории движения кинков, запущенных в этих последовательностях при разных начальных значениях энергии. Результаты наших исследований подтвердили существование эффекта Касмана, но только в ограниченном интервале начальных значений энергии кинков и при определенном направлении движения кинков. В других случаях этот эффект не наблюдался. Мы обсудили, какие из исследованных последовательностей энергетически были более предпочтительны для возбуждения и распространения кинков.
Ключевые слова: компьютерное моделирование, динамика ДНК, последовательности из кодонов ДНК, энергетический профиль, траектории кинков.
On the computer experiments of Kasman
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 503-513Views (last year): 23.In 2007 Kasman conducted a series of original computer experiments with sine-Gordon kinks moving along artificial DNA sequences. Two sequences were considered. Each consisted of two parts separated by a boundary. The left part of the first sequence contained repeating TTA triplets that encode leucines, and the right part contained repeating CGC triplets that encode arginines. In the second sequence, the left part contained repeating CTG triplets encoding leucines, and the right part contained repeating AGA triplets encoding arginines. When modeling the kink movement, an interesting effect was discovered. It turned out that the kink, moving in one of the sequences, stopped without reaching the end of the sequence, and then “bounced off” as if he had hit a wall. At the same time, the kink movement in the other sequence did not stop during the entire time of the experiment. In these computer experiments, however, a simple DNA model proposed by Salerno was used. It takes into account differences in the interactions of complementary bases within pairs, but does not take into account differences in the moments of inertia of nitrogenous bases and in the distances between the centers of mass of the bases and the sugar-phosphate chain. The question of whether the Kasman effect will continue with the use of more accurate DNA models is still open. In this paper, we investigate the Kasman effect on the basis of a more accurate DNA model that takes both of these differences into account. We obtained the energy profiles of Kasman's sequences and constructed the trajectories of the motion of kinks launched in these sequences with different initial values of the energy. The results of our investigations confirmed the existence of the Kasman effect, but only in a limited interval of initial values of the kink energy and with a certain direction of the kinks movement. In other cases, this effect did not observe. We discussed which of the studied sequences were energetically preferable for the excitation and propagation of kinks.
-
Динамические свойства полинуклеотидной цепи, состоящей из двух неодинаковых однородных последовательностей, разделенных границей
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 241-253Для исследования динамики неоднородной полинуклеотидной цепочки ДНК была использована упрощенная Y-модель с нулевым диссипативным членом. На основе этой модели с помощью численных методов были проведены расчеты, демонстрирующие поведение нелинейного конформационного возмущения (кинка), распространяющегося вдоль неоднородной полинуклеотидной цепи, состоящей из двух разных однородных последовательностей нуклеотидов. Как показал численный анализ, нелинейное возмущение в виде кинка, распространяющееся вдоль рассматриваемой модельной молекулы ДНК, может вести себя тремя разными способами. При достижении границы между двумя однородными последовательностями, состоящими из разных типов оснований, кинк может: а) отразиться, б) пройти границу с ускорением (увеличить скорость), в) пройти границу с замедлением (уменьшить скорость).
The dynamics of polynucleotide chain consisting of two different homogeneous sequences, divided by interface
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 241-253Views (last year): 1. Citations: 3 (RSCI).To research dynamics of inhomogeneous polynucleotide DNA chain the Y-model with no dissipation term was used. Basing on this model using numerical methods calculations were carried out, which have shown the behaviour of nonlinear conformational excitation (kink), spreading along the inhomogeneous polynucleotide chain, consisting of two different homogeneous nucleotide sequences. As numerical analysis shows there are three ways of behaviour of the nonlinear kink excitation spreading along the DNA chain. After reaching the interface between two homogeneous sequences consisting of different types of bases kink can a) reflect, b) pass the interface with acceleration (increase its velocity), c) pass the interface with deceleration (decrease its velocity).
-
Динамика кинков, активированных в генах ADRB2, NOS1 и IL-5
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 391-399В данной работе метод концентраций применен к геному человека. Рассчитаны динамические характеристики трех различных генов (ADRB2, NOS1, IL-5) с установленным влиянием на течение бронхиальной астмы.
Dynamics of kinks activated in the genes ADRB2, NOS1 and IL-5
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 391-399Views (last year): 1. Citations: 2 (RSCI).In this paper the method of concentrations is applied to the human genome. The dynamical characteristics of three different genes (ADRB2, NOS1, IL-5) with the established effect on bronchial asthma.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"