All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Прямые мультипликативные методы для разреженных матриц. Ньютоновские методы
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 679-703Рассматривается численно устойчивый прямой мультипликативный алгоритм решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество алгоритма состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью $LU$-разложения, просто другая схема реализации метода исключения Гаусса.
В данной работе этот алгоритм лежит в основе решения следующих задач.
Задача 1. Задание направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из известных техник построения существенно положительно определенной матрицы. Такой подход позволяет ослабить или снять дополнительные специфические трудности, обусловленные необходимостью решения больших систем уравнений с разреженными матрицами, представленных в упакованном виде.
Задача 2. Построение новой математической формулировки задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности. Они достаточно просты и могут быть использованы для построения методов математического программирования, например для поиска минимума квадратичной функции на многогранном множестве ограничений, основанного на решениях систем линейных уравнений, размерность которых не выше числа переменных целевой функции.
Задача 3. Построение непрерывного аналога задачи минимизации вещественного квадратичного многочлена от булевых переменных и новой формы задания необходимых и достаточных условий оптимальности для разработки методов их решения за полиномиальное время. В результате исходная задача сводится к задаче поиска минимального расстояния между началом координат и угловой точкой выпуклого многогранника (полиэдра), который является возмущением $n$-мерного куба и описывается системой двойных линейных неравенств с верхней треугольной матрицей коэффициентов с единицами на главной диагонали. Исследованию подлежат только две грани, одна из которых или обе содержат вершины, ближайшие к началу координат. Для их вычисления достаточно решить $4n – 4$ систем линейных уравнений и выбрать среди них все ближайшие равноудаленные вершины за полиномиальное время. Задача минимизации квадратичного полинома является $NP$-трудной, поскольку к ней сводится $NP$-трудная задача о вершинном покрытии для произвольного графа. Отсюда следует вывод, что $P = NP$, в основе построения которого лежит выход за пределы целочисленных методов оптимизации.
Ключевые слова: $NP$-трудные задачи, разреженные матрицы, ньютоновские методы, прямой мультипликативный алгоритм, направление спуска, новые математические формулировки, необходимые и достаточные условия оптимальности, минимизация псевдобулевой функции, псевдобулево программирование, линейное программирование.
Direct multiplicative methods for sparse matrices. Newton methods
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703Views (last year): 7. Citations: 1 (RSCI).We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.
In this paper, this algorithm is the basis for solving the following problems:
Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.
Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.
Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.
-
Прямые мультипликативные методы для разреженных матриц. Квадратичное программирование
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 407-420Рассматривается численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество метода состоит в расчете факторов Холесского для положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью LU-разложения, просто другая схема реализации метода исключения Гаусса.
Расчет факторов Холесского для положительно определенной матрицы системы и ее решение лежит в основе построения новой математической формулировки безусловной задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности, которые достаточно просты и в данной работе используются для построения новой математической формулировки задачи квадратичного программирования на многогранном множестве ограничений, которая представляет собой задачу поиска минимального расстояния между началом координат и точкой границы многогранного множества ограничений средствами линейной алгебры и многомерной геометрии.
Для определения расстояния предлагается применить известный точный метод, основанный на решении систем линейных уравнений, размерность которых не выше числа переменных целевой функции. Расстояния определяются построением перпендикуляров к граням многогранника различной размерности. Для уменьшения числа исследуемых граней предлагаемый метод предусматривает специальный порядок перебора граней. Исследованию подлежат только грани, содержащие вершину, ближайшую к точке безусловного экстремума, и видимые из этой точки. В случае наличия нескольких ближайших равноудаленных вершин исследуется грань, содержащая все эти вершины, и грани меньшей размерности, имеющие с первой гранью не менее двух общих ближайших вершин.
Ключевые слова: математическое программирование, квадратичное программирование, разреженные матрицы, прямой мультипликативный алгоритм, новые математические формулировки, необходимые и достаточные условия оптимальности, квадратичная задача, линейное программирование, многомерная геометрия.
Direct multiplicative methods for sparse matrices. Quadratic programming
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 407-420Views (last year): 32.A numerically stable direct multiplicative method for solving systems of linear equations that takes into account the sparseness of matrices presented in a packed form is considered. The advantage of the method is the calculation of the Cholesky factors for a positive definite matrix of the system of equations and its solution within the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made to the position of the next processed row of the matrix, which allows using static data storage formats. The solution of the system of linear equations by a direct multiplicative algorithm is, like the solution with LU-decomposition, just another scheme for implementing the Gaussian elimination method.
The calculation of the Cholesky factors for a positive definite matrix of the system and its solution underlies the construction of a new mathematical formulation of the unconditional problem of quadratic programming and a new form of specifying necessary and sufficient conditions for optimality that are quite simple and are used in this paper to construct a new mathematical formulation for the problem of quadratic programming on a polyhedral set of constraints, which is the problem of finding the minimum distance between the origin ordinate and polyhedral boundary by means of a set of constraints and linear algebra dimensional geometry.
To determine the distance, it is proposed to apply the known exact method based on solving systems of linear equations whose dimension is not higher than the number of variables of the objective function. The distances are determined by the construction of perpendiculars to the faces of a polyhedron of different dimensions. To reduce the number of faces examined, the proposed method involves a special order of sorting the faces. Only the faces containing the vertex closest to the point of the unconditional extremum and visible from this point are subject to investigation. In the case of the presence of several nearest equidistant vertices, we investigate a face containing all these vertices and faces of smaller dimension that have at least two common nearest vertices with the first face.
-
Использование функций обратных связей для решения задач параметрического программирования
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1125-1151Рассматривается конечномерная оптимизационная задача, постановка которой, помимо искомых переменных, содержит параметры. Ее решение есть зависимость оптимальных значений переменных от параметров. В общем случае такие зависимости не являются функциями, поскольку могут быть неоднозначными, а в функциональном случае — быть недифференцируемыми. Кроме того, область их существования может оказаться уже области определения функций в условии задачи. Эти свойства затрудняют решение как исходной задачи, так и задач, в постановку которых входят данные зависимости. Для преодоления этих затруднений обычно применяются методы типа недифференцируемой оптимизации.
В статье предлагается альтернативный подход, позволяющий получать решения параметрических задач в форме, лишенной указанных свойств. Показывается, что такие представления могут исследоваться стандартными алгоритмами, основанными на формуле Тейлора. Данная форма есть функция, гладко аппроксимирующая решение исходной задачи. При этом величина погрешности аппроксимации регулируется специальным параметром. Предлагаемые аппроксимации строятся с помощью специальных функций, устанавливающих обратные связи между переменными и множителями Лагранжа. Приводится краткое описание этого метода для линейных задач с последующим обобщением на нелинейный случай.
Построение аппроксимации сводится к отысканию седловой точки модифицированной функции Лагранжа исходной задачи. Показывается, что необходимые условия существования такой седловой точки подобны условиям теоремы Каруша – Куна – Таккера, но не содержат в явном виде ограничений типа неравенств и условий дополняющей нежесткости. Эти необходимые условия аппроксимацию определяют неявным образом. Поэтому для вычисления ее дифференциальных характеристик используется теорема о неявных функциях. Эта же теорема применяется для уменьшения погрешности аппроксимации.
Особенности практической реализации метода функций обратных связей, включая оценки скорости сходимости к точному решению, демонстрируются для нескольких конкретных классов параметрических оптимизационных задач. Конкретно: рассматриваются задачи поиска глобального экстремума функций многих переменных и задачи на кратный экстремум (максимин-минимакс). Также рассмотрены оптимизационные задачи, возникающие при использовании многокритериальных математических моделей. Для каждого из этих классов приводятся демонстрационные примеры.
Ключевые слова: задача нелинейного программирования с параметрами, функция обратных связей, модифицированная функция Лагранжа, поиск глобального экстремума, минимакс, многокритериальная модель.
Using feedback functions to solve parametric programming problems
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1125-1151We consider a finite-dimensional optimization problem, the formulation of which in addition to the required variables contains parameters. The solution to this problem is a dependence of optimal values of variables on parameters. In general, these dependencies are not functions because they can have ambiguous meanings and in the functional case be nondifferentiable. In addition, their domain of definition may be narrower than the domains of definition of functions in the condition of the original problem. All these properties make it difficult to solve both the original parametric problem and other tasks, the statement of which includes these dependencies. To overcome these difficulties, usually methods such as non-differentiable optimization are used.
This article proposes an alternative approach that makes it possible to obtain solutions to parametric problems in a form devoid of the specified properties. It is shown that such representations can be explored using standard algorithms, based on the Taylor formula. This form is a function smoothly approximating the solution of the original problem for any parameter values, specified in its statement. In this case, the value of the approximation error is controlled by a special parameter. Construction of proposed approximations is performed using special functions that establish feedback (within optimality conditions for the original problem) between variables and Lagrange multipliers. This method is described for linear problems with subsequent generalization to the nonlinear case.
From a computational point of view the construction of the approximation consists in finding the saddle point of the modified Lagrange function of the original problem. Moreover, this modification is performed in a special way using feedback functions. It is shown that the necessary conditions for the existence of such a saddle point are similar to the conditions of the Karush – Kuhn – Tucker theorem, but do not contain constraints such as inequalities and conditions of complementary slackness. Necessary conditions for the existence of a saddle point determine this approximation implicitly. Therefore, to calculate its differential characteristics, the implicit function theorem is used. The same theorem is used to reduce the approximation error to an acceptable level.
Features of the practical implementation feedback function method, including estimates of the rate of convergence to the exact solution are demonstrated for several specific classes of parametric optimization problems. Specifically, tasks searching for the global extremum of functions of many variables and the problem of multiple extremum (maximin-minimax) are considered. Optimization problems that arise when using multicriteria mathematical models are also considered. For each of these classes, there are demo examples.
-
Высокопроизводительные вычисления на гибридных системах: будут ли решены «задачи большого вызова»?
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 429-437На примере расчета течений проводится анализ возможностей современных гибридных распределенных вычислительных систем для расчета «задач большого вызова». Приводятся соображения, что только многоуровневый комплексный подход к такой проблеме позволит эффективно масштабировать подобные задачи. Подход подразумевает использование новых математических моделей процессов переноса, разделение на динамическом уровне явлений переноса и внутренних процессов и использование новых парадигм программирования, учитывающих особенности современных гибридных систем.
Ключевые слова: гибридная система, «задачи большого вызова», тензорная математика, аэрогидродинамика, вычислительный эксперимент.
High performance computations on hybrid systems: will "grand challenges" be solved?
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 429-437Views (last year): 7. Citations: 8 (RSCI).Based on CFD computations we provide the analysis of the possibilities for using modern hybrid distributed computational environments for large complex system simulation. We argue that only multilevel approach supported by new mathematical models of transport properties, dynamical representation of the problem with transport and internal processes separated, and modern paradigm of programming, taking into account specific properties of heterogeneous system, will make it possible to scale the problem effectively.
-
Оптимальный промысел и эволюция путей миграции рыбных популяций
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 879-893Представлена новая дискретная эколого-эволюционная математическая модель, в которой реализованы механизмы поиска эволюционно устойчивых маршрутов миграции рыбных популяций. Предложенные адаптивные конструкции имеют малую размерность и поэтому обладают высоким быстродействием, что позволяет проводить компьютерные расчеты на длительный срок за приемлемое машинное время. При исследовании устойчивости использованы как геометрические подходы нелинейного анализа, так и компьютерные асимптотические методы. Динамика миграции рыбной популяции описывается некоторой марковской матрицей, которая может изменяться в процессе эволюции. В семействе марковских матриц (фиксированной размерности) выделены базисные матрицы, которые использованы для генерации маршрутов миграции мутантов. В результате конкуренции исходной популяции с мутантами выявляется перспективное направление эволюции пространственного поведения рыбы при заданном промысле и кормовой базе. Данная модель была применена к решению проблемы оптимального вылова на долгосрочную перспективу, при условии, что водоем разделен на две части, у каждой из которых свой собственник. При решении оптимизационных задач используется динамическое программирование, основанное на построении функции Беллмана. Обнаружена парадоксальная стратегия заманивания, когда один из участников промысла на своей акватории временно сокращает вылов. В этом случае мигрирующая рыба больше времени проводит в этом районе (при условии равной кормовой базы). Такой маршрут эволюционно закрепляется и не изменяется даже после возобновления промысла в этом районе. Второй участник промысла может восстановить статус-кво, применив заманивание на своей части акватории. Возникает бесконечная последовательность заманиваний — своеобразная игра в поддавки. Введено новое эффективное понятие — внутренняя цена рыбной популяции, зависящая от района водоема. По сути, эти цены представляют собой частные производные функции Беллмана и могут быть использованы в качестве налога на выловленную рыбу. В этом случае проблема многолетнего промысла сводится к решению задачи одногодичной оптимизации.
Ключевые слова: многолетний промысел, оптимизация, пространственная адаптация, стратегия заманивания, внутренние цены.
Optimal fishing and evolution of fish migration routes
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.
-
Гиперграфовый подход в декомпозиции сложных технических систем
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1007-1022В статье рассматривается математическая модель декомпозиции сложного изделия на сборочные единицы. Это важная инженерная задача, которая влияет на организацию дискретного производства и его и оперативное управление. Приведен обзор современных подходов к математическому моделированию и автоматизированному синтезу декомпозиций. В них математическими моделями структур технических систем служат графы, сети, матрицы и др. Эти модели описывают механическую структуру как бинарное отношение на множестве элементов системы. Геометрическая координация и целостность машин и механических приборов в процессе изготовления достигаются при помощи базирования. В общем случае базирование может осуществляться относительно нескольких элементов одновременно. Поэтому оно представляет собой отношение переменной местности, которое не может быть корректно описано в терминах бинарных математических структур. Описана новая гиперграфовая модель механической структуры технической системы. Эта модель позволяет дать точную и лаконичную формализацию сборочных операций и процессов. Рассматриваются сборочные операции, которые выполняются двумя рабочими органами и заключаются в реализации механических связей. Такие операции называются когерентными и секвенциальными. Это преобладающий тип операций в современной промышленной практике. Показано, что математическим описанием такой операции является нормальное стягивание ребра гиперграфа. Последовательность стягиваний, трансформирующая гиперграф в точку, представляет собой математическую модель сборочного процесса. Приведены доказанные автором две важные теоремы о свойствах стягиваемых гиперграфов и подграфов. Введено понятие $s$-гиперграфа. $S$-гиперграфы являются корректными математическими моделями механических структур любых собираемых технических систем. Декомпозиция изделия на сборочные единицы поставлена как разрезание $s$-гиперграфа на $s$-подграфы. Задача разрезания описана в терминах дискретного математического программирования. Получены математические модели структурных, топологических и технологических ограничений. Предложены целевые функции, формализующие оптимальный выбор проектных решений в различных ситуациях. Разработанная математическая модель декомпозиции изделия является гибкой и открытой. Она допускает расширения, учитывающие особенности изделия и его производства.
Ключевые слова: сборка, сборочная единица, структура изделия, декомпозиция на сборочные единицы, система автоматизированного проектирования, граф связей, гиперграф, дискретное математическое программирование.
Hypergraph approach in the decomposition of complex technical systems
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1007-1022The article considers a mathematical model of decomposition of a complex product into assembly units. This is an important engineering problem, which affects the organization of discrete production and its operational management. A review of modern approaches to mathematical modeling and automated computer-aided of decompositions is given. In them, graphs, networks, matrices, etc. serve as mathematical models of structures of technical systems. These models describe the mechanical structure as a binary relation on a set of system elements. The geometrical coordination and integrity of machines and mechanical devices during the manufacturing process is achieved by means of basing. In general, basing can be performed on several elements simultaneously. Therefore, it represents a variable arity relation, which can not be correctly described in terms of binary mathematical structures. A new hypergraph model of mechanical structure of technical system is described. This model allows to give an adequate formalization of assembly operations and processes. Assembly operations which are carried out by two working bodies and consist in realization of mechanical connections are considered. Such operations are called coherent and sequential. This is the prevailing type of operations in modern industrial practice. It is shown that the mathematical description of such operation is normal contraction of an edge of the hypergraph. A sequence of contractions transforming the hypergraph into a point is a mathematical model of the assembly process. Two important theorems on the properties of contractible hypergraphs and their subgraphs proved by the author are presented. The concept of $s$-hypergraphs is introduced. $S$-hypergraphs are the correct mathematical models of mechanical structures of any assembled technical systems. Decomposition of a product into assembly units is defined as cutting of an $s$-hypergraph into $s$-subgraphs. The cutting problem is described in terms of discrete mathematical programming. Mathematical models of structural, topological and technological constraints are obtained. The objective functions are proposed that formalize the optimal choice of design solutions in various situations. The developed mathematical model of product decomposition is flexible and open. It allows for extensions that take into account the characteristics of the product and its production.
-
Зависимость работы организации от ее организационной структуры в ходе неожиданных и тлеющих кризисов
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 685-706В работе описана математическая модель функционирования организации с иерархической структурой управления на ранней стадии кризиса. Особенность развития этой стадии кризиса заключается в наличии так называемых сигналов раннего предупреждения, которые несут информацию о приближении нежелательного явления. Сотрудники организации способны улавливать эти сигналы и на их основе подготавливать ее к наступлению кризиса. Эффективность такой подготовки зависит как от параметров организации, так и от параметров кризисного явления. Предлагаемая в статье имитационная агентная модель реализована на языке программирования Java. Эта модель используется по методу Монте-Карло для сравнения децентрализованных и централизованных организационных структур, функционирующих в ходе неожиданных и тлеющих кризисов. Централизованными мы называем структуры с большим количеством уровней иерархии и малым количеством подчиненных у каждого руководителя, а децентрализованными — структуры с малым количеством уровней иерархии и большим количеством подчиненных у каждого руководителя. Под неожиданным кризисом понимается кризис со скоротечной ранней стадией и малым количеством слабых сигналов, а под тлеющим кризисом — кризис с длительной ранней стадией и большим количеством сигналов, не всегда несущих важную информацию. Эффективность функционирования организации на ранней стадии кризиса измеряется по двум параметрам: проценту сигналов раннего предупреждения, по которым были приняты решения для подготовки организации, и доле времени, отведенного руководителем организации на работу с сигналами. По результатам моделирования выявлено, что централизованные организации обрабатывают больше сигналов раннего предупреждения при тлеющих кризисах, а децентрализованные — при неожиданных кризисах. С другой стороны, занятость руководителя организации в ходе неожиданных кризисов выше для децентрализованных организаций, а в ходе тлеющих кризисов — для централизованных. В итоге, ни один из двух классов организаций не является более эффективным в ходе изученных типов кризисов сразу по обоим параметрам. Полученные в работе результаты проверены на устойчивость по параметрам, описывающим организацию и сотрудников.
Ключевые слова: кризис, антикризисное управление, слабые сигналы, математическое моделирование, имитационное моделирование, агентное моделирование, организационные структуры, метод Монте-Карло.
Relation between performance of organization and its structure during sudden and smoldering crises
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 685-706Views (last year): 2. Citations: 2 (RSCI).The article describes a mathematical model that simulates performance of a hierarchical organization during an early stage of a crisis. A distinguished feature of this stage of crisis is presence of so called early warning signals containing information on the approaching event. Employees are capable of catching the early warnings and of preparing the organization for the crisis based on the signals’ meaning. The efficiency of the preparation depends on both parameters of the organization and parameters of the crisis. The proposed simulation agentbased model is implemented on Java programming language and is used for conducting experiments via Monte- Carlo method. The goal of the experiments is to compare how centralized and decentralized organizational structures perform during sudden and smoldering crises. By centralized organizations we assume structures with high number of hierarchy levels and low number of direct reports of every manager, while decentralized organizations mean structures with low number of hierarchy levels and high number of direct reports of every manager. Sudden crises are distinguished by short early stage and low number of warning signals, while smoldering crises are defined as crises with long lasting early stage and high number of warning signals not necessary containing important information. Efficiency of the organizational performance during early stage of a crisis is measured by two parameters: percentage of early warnings which have been acted upon in order to prepare organization for the crisis, and time spent by top-manager on working with early warnings. As a result, we show that during early stage of smoldering crises centralized organizations process signals more efficiently than decentralized organizations, while decentralized organizations handle early warning signals more efficiently during early stage of sudden crises. However, occupation of top-managers during sudden crises is higher in decentralized organizations and it is higher in centralized organizations during smoldering crises. Thus, neither of the two classes of organizational structures is more efficient by the two parameters simultaneously. Finally, we conduct sensitivity analysis to verify the obtained results.
-
Cубградиентные методы с шагом типа Б. Т. Поляка для задач минимизации квазивыпуклых функций с ограничениями-неравенствами и аналогами острого минимума
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 105-122В работе рассмотрено два варианта понятия острого минимума для задач математического программирования с квазивыпуклой целевой функцией и ограничениями-неравенствами. Исследована задача описания варианта простого субградиентного метода с переключениями по продуктивным и непродуктивным шагам, для которого бы на классе задач с липшицевыми функциями можно было гарантировать сходимость со скоростью геометрической прогрессии ко множеству точных решений или его окрестности. При этом важно, чтобы для реализации метода не было необходимости знать параметр острого минимума, который обычно сложно оценить на практике. В качестве решения проблемы авторы предлагают использовать процедуру регулировки шага, аналогичную предложенной ранее Б. Т. Поляком. Однако при этом более остро по сравнению с классом задач без ограничений встает проблема знания точного значения минимума целевой функции. В работе описываются условия на погрешность этой информации, которые позволяют сохранить сходимость со скоростью геометрической прогрессии в окрестность множества точек минимума задачи. Рассмотрено два аналога понятия острого минимума для задач с ограничениями-неравенствами. В первом случае возникает проблема приближения к точному решению лишь до заранее выбранного уровня точности, при этом рассматривается случай, когда минимальное значение целевой функции неизвестно, вместо этого дано некоторое его приближение. Описаны условия на неточность минимума целевой функции, при которой все еще сохраняется сходимость к окрестности искомого множества точек со скоростью геометрической прогрессии. Второй рассматриваемый вариант острого минимума не зависит от желаемой точности задачи. Для него предложен несколько иной способ проверки продуктивности шага, позволяющий в случае точной информации гарантировать сходимость метода к точному решению со скоростью геометрической прогрессии. Доказаны оценки сходимости в условиях слабой выпуклости ограничений и некоторых ограничениях на выбор начальной точки, а также сформулирован результат-следствие для выпуклого случая, когда необходимость дополнительного предположения о выборе начальной точки пропадает. Для обоих подходов доказано убывание расстояния от текущей точки до множества решений с ростом количества итераций. Это, в частности, позволяет ограничить требования используемых свойств функций (липшицевость, острый минимум) лишь для ограниченного множества. Выполнены вычислительные эксперименты, в том числе для задачи проектирования механических конструкций.
Ключевые слова: субградиентный метод, липшицева функция, острый минимум, шаг Б. Т. Поляка, квазивыпуклая функция, слабовыпуклая функция.
Subgradient methods with B.T. Polyak-type step for quasiconvex minimization problems with inequality constraints and analogs of the sharp minimum
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 105-122In this paper, we consider two variants of the concept of sharp minimum for mathematical programming problems with quasiconvex objective function and inequality constraints. It investigated the problem of describing a variant of a simple subgradient method with switching along productive and non-productive steps, for which, on a class of problems with Lipschitz functions, it would be possible to guarantee convergence with the rate of geometric progression to the set of exact solutions or its vicinity. It is important that to implement the proposed method there is no need to know the sharp minimum parameter, which is usually difficult to estimate in practice. To overcome this problem, the authors propose to use a step adjustment procedure similar to that previously proposed by B. T. Polyak. However, in this case, in comparison with the class of problems without constraints, it arises the problem of knowing the exact minimal value of the objective function. The paper describes the conditions for the inexactness of this information, which make it possible to preserve convergence with the rate of geometric progression in the vicinity of the set of minimum points of the problem. Two analogs of the concept of a sharp minimum for problems with inequality constraints are considered. In the first one, the problem of approximation to the exact solution arises only to a pre-selected level of accuracy, for this, it is considered the case when the minimal value of the objective function is unknown; instead, it is given some approximation of this value. We describe conditions on the inexact minimal value of the objective function, under which convergence to the vicinity of the desired set of points with a rate of geometric progression is still preserved. The second considered variant of the sharp minimum does not depend on the desired accuracy of the problem. For this, we propose a slightly different way of checking whether the step is productive, which allows us to guarantee the convergence of the method to the exact solution with the rate of geometric progression in the case of exact information. Convergence estimates are proved under conditions of weak convexity of the constraints and some restrictions on the choice of the initial point, and a corollary is formulated for the convex case when the need for an additional assumption on the choice of the initial point disappears. For both approaches, it has been proven that the distance from the current point to the set of solutions decreases with increasing number of iterations. This, in particular, makes it possible to limit the requirements for the properties of the used functions (Lipschitz-continuous, sharp minimum) only for a bounded set. Some computational experiments are performed, including for the truss topology design problem.
-
Анализ респираторных реакций человека в условиях измененной газовой среды на математической модели
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 281-296Цель работы — обоснование и разработка методики прогноза динамики респираторных реакций человека на основе математического моделирования. Для достижения этой цели были поставлены и решены следующие задачи: разработаны и обоснованы общая структура и формализованное описание модели респираторной системы; построен и программно реализован алгоритм модели газообмена организма; проведены вычислительный эксперимент и проверка модели на адекватность на основе литературных данных и собственных экспериментальных исследований.
В данном варианте в комплексную модель вошел новый модифицированный вариант частной модели физико-химических свойств крови и кислотно-щелочного баланса. При разработке модели в основу формализованного описания была положена концепция разделения физиологической системы регуляции на активные и пассивные подсистемы регуляции. Разработка модели проводилась поэтапно. Комплексная модель газообмена состояла из следующих частных моделей: базовой биофизической модели системы газообмена; модели физико-химических свойств крови и кислотно-щелочного баланса; модели пассивных механизмов газообмена, разработанной на основе уравнений материального баланса Гродинза Ф.; модели химической регуляции, разработанной на основе многофакторной модели Грея Д.
При программной реализации модели расчеты выполнялись в среде программирования MatLab. Для решения уравнений использовался метод Рунге–Кутты–Фехлберга. При этом предполагается, что модель будет представлена в виде компьютерной исследовательской программы, позволяющей реализовать различные гипотезы о механизме наблюдаемых процессов. Рассчитаны предполагаемые величины основных показателей газообмена в условиях гиперкапнии и гипоксии. Результаты расчетов, как по характеру, так и количественно, достаточно хорошо согласуются с данными, полученными в исследованиях на испытателях. Проведенная проверка на адекватность подтвердила, что погрешность вычислений находится в пределах погрешности данных медико-биологических экспериментов. Модель можно использовать при теоретическом прогнозировании динамики респираторных реакций организма человека в условиях измененной газовой среды.
Ключевые слова: математическая модель, минутный объем дыхания, имитация, регуляция, дыхание, респираторная система, гипоксия, гиперкапния.
The analysis of respiratory reactions of the person in the conditions of the changed gas environment on mathematical model
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 281-296Views (last year): 5.The aim of the work was to study and develop methods of forecasting the dynamics of the human respiratory reactions, based on mathematical modeling. To achieve this goal have been set and solved the following tasks: developed and justified the overall structure and formalized description of the model Respiro-reflex system; built and implemented the algorithm in software models of gas exchange of the body; computational experiments and checking the adequacy of the model-based Lite-ture data and our own experimental studies.
In this embodiment, a new comprehensive model entered partial model modified version of physicochemical properties and blood acid-base balance. In developing the model as the basis of a formalized description was based on the concept of separation of physiologically-fi system of regulation on active and passive subsystems regulation. Development of the model was carried out in stages. Integrated model of gas exchange consisted of the following special models: basic biophysical models of gas exchange system; model physicochemical properties and blood acid-base balance; passive mechanisms of gas exchange model developed on the basis of mass balance equations Grodinza F.; chemical regulation model developed on the basis of a multifactor model D. Gray.
For a software implementation of the model, calculations were made in MatLab programming environment. To solve the equations of the method of Runge–Kutta–Fehlberga. It is assumed that the model will be presented in the form of a computer research program, which allows implements vat various hypotheses about the mechanism of the observed processes. Calculate the expected value of the basic indicators of gas exchange under giperkap Britain and hypoxia. The results of calculations as the nature of, and quantity is good enough co-agree with the data obtained in the studies on the testers. The audit on Adek-vatnost confirmed that the error calculation is within error of copper-to-biological experiments. The model can be used in the theoretical prediction of the dynamics of the respiratory reactions of the human body in a changed atmosphere.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"