All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Метод обработки данных акустико-эмиссионного контроля для определения скорости и локации каждого сигнала
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1029-1040Акустико-эмиссионный метод неразрушающего контроля является одним из эффективных и экономичных способов обследования сосудов высокого давления для поиска в них скрытых дефектов (трещин, расслоений и др.), а также единственным методом, чувствительным к развивающимся дефектам. Скорость распространения звука в объекте контроля и ее адекватное определение в локационной схеме имеют важнейшее значение для точности локации источника акустической эмиссии. Предложенный в статье метод обработки данных акустической эмиссии позволяет определить координаты источника и наиболее вероятную скорость для каждого сигнала. Метод включает в себя предварительную фильтрацию данных по амплитуде, по разности времен прихода, исключение электромагнитных помех. Далее к ним применяется комплекс численных методов для решения получившихся нелинейных уравнений, в частности метод Ньютона–Канторовича и общий итерационный процесс. Скорость распространения сигнала от одного источника принимается постоянной во всех направлениях. В качестве начального приближения берется центр тяжести треугольника, образованного первыми тремя датчиками, зафиксировавшими сигнал. Разработанный метод имеет важное практическое применение, и в статье приведен пример его апробации при калибровке акустико- эмиссионной системы на производственном объекте (абсорбере очистки углеводородного газа). Описаны критерии предварительной фильтрации данных. Полученные локации хорошо согласуются с местоположениями генерации сигналов, а вычисленные скорости четко отражают разделение акустической волны на волны Лэмба и Рэлея благодаря разноудаленности источников сигналов от датчиков. В статье построен график соответствия усредненной скорости сигнала и расстояния от его источника до ближайшего датчика. Основным достоинством разработанного метода можно считать его способность вычислять и отображать на общей схеме объекта местоположение сигналов, имеющих разные скорости, а не задавать единую скорость для всех сигналов акустической эмиссии в рамках одного расчета. Это позволяет увеличить степень свободы при вычислениях и тем самым увеличить их точность.
Ключевые слова: акустическая эмиссия, метод Ньютона – Канторовича, калибровка, локация, метод итераций, дефекты.
Method for processing acoustic emission testing data to define signal velocity and location
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1029-1040Non-destructive acoustic emission testing is an effective and cost-efficient way to examine pressure vessels for hidden defects (cracks, laminations etc.), as well as the only method that is sensitive to developing defects. The sound velocity in the test object and its adequate definition in the location scheme are of paramount importance for the accurate detection of the acoustic emission source. The acoustic emission data processing method proposed herein comprises a set of numerical methods and allows defining the source coordinates and the most probable velocity for each signal. The method includes pre-filtering of data by amplitude, by time differences, elimination of electromagnetic interference. Further, a set of numerical methods is applied to them to solve the system of nonlinear equations, in particular, the Newton – Kantorovich method and the general iterative process. The velocity of a signal from one source is assumed as a constant in all directions. As the initial approximation is taken the center of gravity of the triangle formed by the first three sensors that registered the signal. The method developed has an important practical application, and the paper provides an example of its approbation in the calibration of an acoustic emission system at a production facility (hydrocarbon gas purification absorber). Criteria for prefiltering of data are described. The obtained locations are in good agreement with the signal generation sources, and the velocities even reflect the Rayleigh-Lamb division of acoustic waves due to the different signal source distances from the sensors. The article contains the dependency graph of the average signal velocity against the distance from its source to the nearest sensor. The main advantage of the method developed is its ability to detect the location of different velocity signals within a single test. This allows to increase the degree of freedom in the calculations, and thereby increase their accuracy.
-
Об одной модификации узлового метода характеристик
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 29-44Представлен вариант обратного метода характеристик (МОМХ), в алгоритм которого введен дополнительный дробный временной шаг, что позволяет повысить точность вычислений за счет более точной аппроксимации характеристик. Приведены расчетные формулы модифицированного метода для уравнений односкоростной модели газожидкостной смеси, с помощью которого рассчитаны одномерные, а также плоские тестовые задачи, имеющие автомодельные решения. При решении многомерных задач исходная система уравнений расщепляется на ряд одномерных подсистем, для расчета которых применяется обратный метод характеристик с дробным временным шагом. С использованием предложенного метода рассчитаны: одномерная задача распада произвольного разрыва в дисперсной среде; двумерная задача взаимодействия однородного газожидкостного потока с препятствием с присоединенным ударным скачком, а также течение с центрированной волной разрежения. Результаты численных расчетов этих задач сопоставлены с автомодельными решениями и отмечено их удовлетворительное совпадение. На примере задачи Римана с ударным скачком приведено сравнение с рядом консервативных, неконсервативных первого и повышенного порядков точности схем, из которого, в частности, следует, что представленный метод расчета вполне конкурентоспособен. Несмотря на то что применение МОМХ требует в разы больших временных затрат по сравнению с оригинальным обратным методом характеристик (ОМХ), вычисления можно проводить с увеличенным временным шагом и в ряде случаев получать более точные результаты. Отмечено, что метод с дробным временным шагом имеет преимущества в случаях, когда характеристики системы криволинейные. По этой причине для уравнений Эйлера целесообразно использовать ОМХ вместо МОМХ, поскольку в этом случае характеристики в пределах временного шага мало отличаются от прямых линий.
Ключевые слова: гиперболические модели, обратный метод характеристик, многомерный узловой метод характеристик.
About one version of the nodal method of characteristics
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 29-44A variant of the inverse method of characteristics (IMH) is presented, in whose algorithm an additional fractional time step is introduced, which makes it possible to increase the accuracy of calculations due to a more accurate approximation of the characteristics. The calculation formulas of the modified method for the equations of the one-velocity model of a gas-liquid mixture are given, with the help of which one-dimensional and also flat test problems with self-similar solutions are calculated. When solving multidimensional problems, the original system of equations is split into a number of one-dimensional subsystems, for the calculation of which the inverse method of characteristics with a fractional time step is used. Using the proposed method, the following were calculated: the one-dimensional problem of the decay of an arbitrary discontinuity in a dispersed medium; a twodimensional problem of the interaction of a homogeneous gas-liquid flow with an obstacle with an attached shock wave, as well as a flow with a centered rarefaction wave. The results of numerical calculations of these problems are compared with self-similar solutions and their satisfactory agreement is noted. On the example of the Riemann problem with a shock wave, a comparison is made with a number of conservative, non-conservative, first and higher orders of accuracy schemes, from which, in particular, it follows that the presented calculation method, i. e. MIMC, quite competitive. Despite the fact that the application of MIMC requires many times more time than the original inverse method of characteristics (IMC), calculations can be carried out with an increased time step and, in some cases, more accurate results can be obtained. It is noted that the method with a fractional time step has advantages over the IMC in cases where the characteristics of the system are significantly curvilinear. For this reason, the use of MIMC, for example, for the Euler equations is inappropriate, since for the latter the characteristics within the time step differ little from straight lines.
-
Влияние конечности мантиссы на точность безградиентных методов оптимизации
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 259-280Безградиентные методы оптимизации, или методы нулевого порядка, широко применяются в обучении нейронных сетей, обучении с подкреплением, а также в промышленных задачах, где доступны лишь значения функции в точке (работа с неаналитическими функциями). В частности, метод обратного распространения ошибки в PyTorch работает именно по этому принципу. Существует общеизвестный факт, что при компьютерных вычислениях используется эвристика чисел с плавающей точкой, и из-за этого возникает проблема конечности мантиссы.
В этой работе мы, во-первых, сделали обзор наиболее популярных методов аппроксимации градиента: конечная прямая/центральная разность (FFD/FCD), покомпонентная прямая/центральная разность (FWC/CWC), прямая/центральная рандомизация на $l_2$ сфере (FSSG2/CFFG2); во-вторых, мы описали текущие теоретические представления шума, вносимого неточностью вычисления функции в точке: враждебный шум, случайный шум; в-третьих, мы провели серию экспериментов на часто встречающихся классах задач, таких как квадратичная задача, логистическая регрессия, SVM, чтобы попытаться определить, соответствует ли реальная природа машинного шума существующей теории. Оказалось, что в реальности (по крайней мере на тех классах задач, которые были рассмотрены в данной работе) машинный шум оказался чем-то средним между враждебным шумом и случайным, в связи с чем текущая теория о влиянии конечности мантиссы на поиск оптимума в задачах безградиентной оптимизации требует некоторой корректировки.
Ключевые слова: конечность мантиссы, безградиентные методы оптимизации, аппроксима- ция градиента, градиентный спуск, квадратичная задача, логистическая регрессия.
Influence of the mantissa finiteness on the accuracy of gradient-free optimization methods
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 259-280Gradient-free optimization methods or zeroth-order methods are widely used in training neural networks, reinforcement learning, as well as in industrial tasks where only the values of a function at a point are available (working with non-analytical functions). In particular, the method of error back propagation in PyTorch works exactly on this principle. There is a well-known fact that computer calculations use heuristics of floating-point numbers, and because of this, the problem of finiteness of the mantissa arises.
In this paper, firstly, we reviewed the most popular methods of gradient approximation: Finite forward/central difference (FFD/FCD), Forward/Central wise component (FWC/CWC), Forward/Central randomization on $l_2$ sphere (FSSG2/CFFG2); secondly, we described current theoretical representations of the noise introduced by the inaccuracy of calculating the function at a point: adversarial noise, random noise; thirdly, we conducted a series of experiments on frequently encountered classes of problems, such as quadratic problem, logistic regression, SVM, to try to determine whether the real nature of machine noise corresponds to the existing theory. It turned out that in reality (at least for those classes of problems that were considered in this paper), machine noise turned out to be something between adversarial noise and random, and therefore the current theory about the influence of the mantissa limb on the search for the optimum in gradient-free optimization problems requires some adjustment.
-
Моделирование влияния импульсно-периодического нагрева на формирование возмущений на границе поперечной струи в сверхзвуковом потоке
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 845-860При взаимодействии сверхзвукового потока воздуха с поперечной вторичной струей, инжектируемой в этот поток через отверстие на плоской стенке, формируется особая структура течения. Это течение имеет место при инжекции топлива в прямоточные камеры сгорания сверхзвуковых авиационных двигателей, поэтому в последние годы в России и за рубежом предлагаются и исследуются разнообразные подходы к интенсификации смешения газов в этом течении. Предлагаемый в данной работе подход состоит в использовании искровых разрядов для импульсного нагрева газа и генерации неустойчивостей в сдвиговом слое на границе вторичной струи. С помощью моделирования в российском программном комплексе FlowVision 3.13 были получены характеристики этого течения при отсутствии и наличии импульсно-периодического локального тепловыделения на стенке с наветренной стороны от отверстия инжектора. Проведено сравнение локальных характеристик при различной периодичности импульсного нагрева (соответствующей значениям числа Струхаля 0,25 и 0,31). Показано, что импульсный нагрев может приводить к стимуляции формирования возмущений в сдвиговом слое на границе струи. Для случая отсутствия нагрева и для двух режимов импульсного нагрева было рассчитано значение интегрального критерия эффективности смешения. Показано, что импульсный нагрев может приводить как к уменьшению среднего значения эффективности смешения, так и к его увеличению (до 9% в рассмотренном режиме нагрева). Также проведена валидация использованного метода расчета (нестационарные уравнения Навье – Стокса, осредненные по Рейнольдсу, с модифицированной моделью турбулентности $k-\varepsilon$) на примере типового случая взаимодействия сверхзвукового потока с вторичной поперечной струей, изученного несколькими независимыми группами исследователей и хорошо документированного в литературе. Была показана сеточная сходимость расчета этого типового случая во FlowVision. Было проведено количественное сравнение результатов расчетов FlowVision с экспериментальными данными и другими расчетами. Результаты данного исследования могут быть полезны для специалистов, занимающихся проблемами смешения газов и горения в сверхзвуковом потоке, а также разработкой двигателей для сверхзвуковой авиации.
Ключевые слова: CFD, вычислительная гидродинамика, искровой разряд, сверхзвуковой поток, поперечная инжекция, струя, FlowVision, URANS.
Modeling the influence of repetitively pulsed heating on the formation of perturbations at the boundary of a transverse jet in a supersonic crossflow
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 845-860When a supersonic air flow interacts with a transverse secondary jet injected into this flow through an orifice on a flat wall, a special flow structure is formed. This flow takes place during fuel injection into combustion chambers of supersonic aircraft engines; therefore, in recent years, various approaches to intensifying gas mixing in this type of flow have been proposed and studied in several countries. The approach proposed in this work implies using spark discharges for pulsed heating of the gas and generating the instabilities in the shear layer at the boundary of the secondary jet. Using simulation in the software package FlowVision 3.13, the characteristics of this flow were obtained in the absence and presence of pulsed-periodic local heat release on the wall on the windward side of the injector opening. A comparison was made of local characteristics at different periodicities of pulsed heating (corresponding to the values of the Strouhal number 0.25 and 0.31). It is shown that pulsed heating can stimulate the formation of perturbations in the shear layer at the jet boundary. For the case of the absence of heating and for two modes of pulsed heating, the values of an integral criterion for mixing efficiency were calculated. It is shown that pulsed heating can lead both to a decrease in the average mixing efficiency and to its increase (up to 9% in the considered heating mode). The calculation method used (unsteady Reynolds-averaged Navier – Stokes equations with a modified $k-\varepsilon$ turbulence model) was validated by considering a typical case of the secondary transverse jet interaction with a supersonic flow, which was studied by several independent research groups and well documented in the literature. The grid convergence was shown for the simulation of this typical case in FlowVision. A quantitative comparison was made of the results obtained from FlowVision calculations with experimental data and calculations in other programs. The results of this study can be useful for specialists dealing with the problems of gas mixing and combustion in a supersonic flow, as well as the development of engines for supersonic aviation.
-
Численное решение систем нелинейных дифференциальных уравнений второго порядка с переменными коэффициентами одношаговым методом Галёркина
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1153-1167Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами, в которой в явном виде выделяются члены, линейно зависящие от координат, скоростей и ускорений; нелинейные члены записываются в виде неявных функций от этих переменных. Для численного решения начальной задачи, описываемой такой системой дифференциальных уравнений, используется одношаговый метод Галёркина. На шаге интегрирования неизвестные функции представляются в виде суммы линейных функций, удовлетворяющих начальным условиям, и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближенно по методу Галёркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые на каждом шаге решаются методом итераций. Из решения в конце каждого шага определяются начальные условия на следующем шаге.
Корректирующие функции берутся одинаковыми для всех шагов. В общем случае для расчетов на больших интервалах времени используются 4 или 5 корректирующих функций: в первом наборе — базовые степенные функции от 2-й до 4-й или 5-й степеней; во втором наборе — образованные из базовых функций ортогональные степенные полиномы; в третьем наборе — образованные из базовых функций специальные линейно независимые многочлены с конечными условиями, упрощающими «стыковку» решений на следующих шагах.
На двух примерах расчета нелинейных колебаний систем с одной и с двумя степенями свободы выполнены численные исследования точности численного решения начальных задач на различных интервалах времени по методу Галёркина с использованием указанных наборов степенных корректирующих функций. Выполнены сравнения результатов, полученных по методу Галёркина и по методам Адамса и Рунге – Кутты четвертого порядка. Показано, что методом Галёркина можно получить достоверные результатына значительно больших интервалах времени, чем по методам Адамса и Рунге – Кутты.
Ключевые слова: обыкновенные дифференциальные уравнения, нелинейные системы, начальная задача, численные решения, одношаговый метод Галёркина.
Numerical solution of systems of nonlinear second-order differential equations with variable coefficients by the one-step Galerkin method
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1153-1167A nonlinear oscillatory system described by ordinary differential equations with variable coefficients is considered, in which terms that are linearly dependent on coordinates, velocities and accelerations are explicitly distinguished; nonlinear terms are written as implicit functions of these variables. For the numerical solution of the initial problem described by such a system of differential equations, the one-step Galerkin method is used. At the integration step, unknown functions are represented as a sum of linear functions satisfying the initial conditions and several given correction functions in the form of polynomials of the second and higher degrees with unknown coefficients. The differential equations at the step are satisfied approximately by the Galerkin method on a system of corrective functions. Algebraic equations with nonlinear terms are obtained, which are solved by iteration at each step. From the solution at the end of each step, the initial conditions for the next step are determined.
The corrective functions are taken the same for all steps. In general, 4 or 5 correction functions are used for calculations over long time intervals: in the first set — basic power functions from the 2nd to the 4th or 5th degrees; in the second set — orthogonal power polynomials formed from basic functions; in the third set — special linear-independent polynomials with finite conditions that simplify the “docking” of solutions in the following steps.
Using two examples of calculating nonlinear oscillations of systems with one and two degrees of freedom, numerical studies of the accuracy of the numerical solution of initial problems at various time intervals using the Galerkin method using the specified sets of power-law correction functions are performed. The results obtained by the Galerkin method and the Adams and Runge –Kutta methods of the fourth order are compared. It is shown that the Galerkin method can obtain reliable results at significantly longer time intervals than the Adams and Runge – Kutta methods.
-
Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.
Ключевые слова: нелинейное уравнение параболического типа, уравнение теплопроводности, метод нулевого поля, метод коллокаций, радиальные базисные функции, метод граничных элементов.
Solution to a two-dimensional nonlinear heat equation using null field method
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.
-
Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.
Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.
-
Численное моделирование обратного влияния полимерной примеси на колмогоровское течение
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1093-1105Предложен численный метод, аппроксимирующий уравнения динамики слабосжимаемого вязкого течения при наличии полимерной составляющей потока. Исследуется поведение течения под воздействием статической внешней периодической силы в периодической квадратной ячейке. Методика основывается на гибридном подходе. Гидродинамика течения описывается системой уравнений Навье – Стокса и численно аппроксимируется линеаризованным методом Годунова. Полимерное поле описывается системой уравнений для вектора растяжений полимерных молекул $\bf R$, которая численно аппроксимируются методом Курганова – Тедмора. Выбор модельных соотношений при разработке численной методики и подбор параметров моделирования позволили на качественном уровне смоделировать и исследовать режим эластической турбулентности при низких числах Рейнольдса $Re \sim 10^{-1}$. Уравнения динамики течения полимерного раствора отличаются от уравнений динамики ньютоновской жидкости наличием в правой части членов, описывающих силы, действующие со стороны полимерной компоненты. Коэффициент пропорциональности $A$ при данных членах характеризует степень обратного влияния количества полимеров на поток. В статье подробно исследуется влияние этого коэффициента на структуру и характеристики потока. Показано, что с его ростом течение становится более хаотическим. Построены энергетические спектры полученных течений и спектры полей растяжения полимеров для различных величин коэффициента $A$. В спектрах прослеживается инерциальный поддиапа- зон энергетического каскада для скорости течения с показателем $k \sim −4$, для каскада растяжений полимерных молекул с показателем $−1,6$.
Ключевые слова: численное моделирование, эластическая турбулентность, гидродинамическая неустойчивость.
Numerical simulation of the backward influence of a polymer additive on the Kolmogorov flow
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1093-1105A numerical method is proposed that approximates the equations of the dynamics of a weakly compressible viscous flow in the presence of a polymer component of the flow. The behavior of the flow under the influence of a static external periodic force in a periodic square cell is investigated. The methodology is based on a hybrid approach. The hydrodynamics of the flow is described by a system of Navier – Stokes equations and is numerically approximated by the linearized Godunov method. The polymer field is described by a system of equations for the vector of stretching of polymer molecules $\bf R$, which is numerically approximated by the Kurganov – Tedmor method. The choice of model relationships in the development of a numerical methodology and the selection of modeling parameters made it possible to qualitatively model and study the regime of elastic turbulence at low Reynolds $Re \sim 10^{-1}$. The polymer solution flow dynamics equations differ from the Newtonian fluid dynamics equations by the presence on the right side of the terms describing the forces acting on the polymer component part. The proportionality coefficient $A$ for these terms characterizes the backward influence degree of the polymers number on the flow. The article examines in detail how the flow and its characteristics change depending on the given coefficient. It is shown that with its growth, the flow becomes more chaotic. The flow energy spectra and the spectra of the polymers stretching field are constructed for different values of $A$. In the spectra, an inertial sub-range of the energy cascade is traced for the flow velocity with an indicator $k \sim −4$, for the cascade of polymer molecules stretches with an indicator $−1.6$.
-
Решение краевых задач с помощью S-сплайна
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 161-171Данная работа посвящена применению теории S-сплайнов для решения уравнений в частных производных на примере уравнения Пуассона. S-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. В зависимости от порядка рассматриваемых полиномов и соотношения между количеством условий первого и второго типов мы получаем S-сплайны с разными свойствами. На настоящий момент изучены сплайны 3-й степени класса C1 и сплайны 5-й степени класса C2(т.е. на них накладывались условия гладкой склейки вплоть до первой и второй производных соответственно). Мы рассмотрим, каким образом могут быть применены сплайны 3-й степени класса C1 при решении уравнения Пуассона на круге и в других областях.
Solving of boundary tasks by using S-spline
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 161-171Views (last year): 8. Citations: 8 (RSCI).This article is dedicated to use of S-spline theory for solving equations in partial derivatives. For example, we consider solution of the Poisson equation. S-spline — is a piecewise-polynomial function. Its coefficients are defined by two states. The first part of coefficients are defined by smoothness of the spline. The second coefficients are determined by least-squares method. According to order of considered polynomial and number of conditions of first and second type we get S-splines with different properties. At this moment we have investigated order 3 S-splines of class C1 and order 5 S-splines of class C2 (they meet conditions of smoothness of order 1 and 2 respectively). We will consider how the order 3 S-splines of class C1 can be applied for solving equation of Poisson on circle and other areas.
-
Квазиклассические асимптотики нелинейного уравнения Фоккера–Планка для распределений доходностей активов
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 41-49Метод квазиклассического приближения применяется для построения решений уравнения Фоккера–Планка с квадратичной нелокальной нелинейностью и переменными коэффициентами в моделях оценки доходностей активов. Получены аналитические выражения, определяющие нелинейный оператор эволюции в квазиклассическом приближении.
Semiclassical asymptotics of nonlinear Fokker–Plank equation for distributions of asset returns
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 41-49Citations: 1 (RSCI).The semiclassical approximation method is applied for solution construction of the Fokker–Planck equation with quadratic nonlocal nonlinearity and various coefficients in models of asset returns estimation. Analitical expressions determining nonlinear evolution operator are obtained in semiclasical approximation.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"