All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Влияние силы плавучести на смешанную конвекцию жидкости переменной плотности в квадратной каверне с подвижной крышкой
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 575-595В работе рассматривается задача стационарной смешанной конвекции и теплообмена вязкой теплопроводной жидкости в плоской квадратной каверне с подвижной верхней крышкой. Нагретая верхняя стенка каверны имеет температуру $T_{\mathrm{H}}$, холодная нижняя — $T_\mathrm{0}$ $(T_\mathrm{H} > T_\mathrm{0})$, а боковые стенки каверны теплоизолированы. Особенностью задачи является тот факт, что плотность жидкости может принимать произвольные значения в зависимости от величины перегрева крышки каверны. Математическая постановка включает в себя уравнения Навье–Стокса в переменных «скорость–давление» и баланса тепла, сформулированные с учетом несжимаемости течения жидкости и воздействия объемной силы плавучести. Разностная аппроксимация исходных дифференциальных уравнений выполнена методом контрольного объема. Численные решения задачи получены на сетке $501 \times 501$ для следующих значений параметров подобия: число Прандтля Pr = 0.70; число Рейнольдса Re = 100, 1000; число Ричардсона Ri = 0.1, 1, 10 и относительный перегрев верхней стенки $(T_\mathrm{H} − T_\mathrm{0})/T_\mathrm{0} = 0, 1, 2, 3$. Достоверность полученных результатов подтверждена их сравнением с литературными данными. Представлены подробные картины течения в виде линий тока и изотерм перегрева потока. Показано, что увеличение значения числа Ричардсона (рост влияния силы плавучести) приводит к принципиальному изменению структуры течения жидкости. Также установлено, что учет переменности плотности жидкости приводит к ослаблению влияния роста Ri на трансформацию структуры течения. Это связано с тем, что изменение плотности в замкнутом объеме всегда приводит к возникновению зон с отрицательной плавучестью. Как следствие, конкуренция положительных и отрицательных объемных сил приводит в целом к ослаблению эффекта плавучести. Также проанализировано поведение коэффициентов теплоотдачи (числа Нуссельта) и трения вдоль нижней стенки каверны в зависимости от параметров задачи. Выявлено, что влияние переменности плотности на эти коэффициенты тем больше, чем большие значения при прочих равных условиях принимает число Ричардсона.
Ключевые слова: уравнения Навье–Стокса, вязкая жидкость, произвольное изменение плотности, теплообмен, смешанная конвекция, каверна с подвижной крышкой, численное моделирование.
Effect of buoyancy force on mixed convection of a variable density fluid in a square lid-driven cavity
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 575-595The paper considers the problem of stationary mixed convection and heat transfer of a viscous heatconducting fluid in a plane square lid-driven cavity. The hot top cover of the cavity has any temperature $T_\mathrm{H}$ and cold bottom wall has temperature $T_\mathrm{0} (T_\mathrm{H} > T_\mathrm{0})$, whereas in contrast the side walls are insulated. The fact that the fluid density can take arbitrary values depending on the amount of overheating of the cavity cover is a feature of the problem. The mathematical formulation includes the Navier–Stokes equations in the ’velocity–pressure’ variables and the heat balance equation which take into account the incompressibility of the fluid flow and the influence of volumetric buoyancy force. The difference approximation of the original differential equations has been performed by the control volume method. Numerical solutions of the problem have been obtained on the $501 \times 501$ grid for the following values of similarity parameters: Prandtl number Pr = 0.70; Reynolds number Re = 100 and 1000; Richardson number Ri = 0.1, 1, and 10; and the relative cover overheating $(T_\mathrm{H}-T_\mathrm{0})/T_\mathrm{0} = 0, 1, 2, 3$. Detailed flow patterns in the form of streamlines and isotherms of relative overheating of the fluid flow are given in the work. It is shown that the increase in the value of the Richardson number (the increase in the influence of buoyancy force) leads to a fundamental change in the structure of the liquid stream. It is also found out that taking into account the variability of the liquid density leads to weakening of the influence of Ri growth on the transformation of the flow structure. The change in density in a closed volume is the cause of this weakening, since it always leads to the existence of zones with negative buoyancy in the presence of a volumetric force. As a consequence, the competition of positive and negative volumetric forces leads in general to weakening of the buoyancy effect. The behaviors of heat exchange coefficient (Nusselt number) and coefficient of friction along the bottom wall of the cavity depending on the parameters of the problem are also analyzed. It is revealed that the greater the values of the Richardson number are, the greater, ceteris paribus, the influence of density variation on these coefficients is.
-
Моделирование двухфазного течения в пористых средах с использованием неоднородной сетевой модели
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 913-925Представлена неоднородная двумерная сетевая модель двухфазного течения в пористых средах. Предполагается, что ребра сети представляют собой капиллярные трубки разного радиуса. Предложен новый алгоритм управления фазовыми потоками в узлах этой сетевой модели. Показано, что сетевая модель демонстрирует свойства, аналогичные свойствам реальных пористых сред: капиллярная пропитка, зависимость капиллярного давления от насыщенности и влияние капиллярных сил при двухфазном течении. Было решено две тестовые задачи: противоточная пропитка пористого блока и двухфазное течение в периодически неоднородной пористой среде. В первой задаче реализована сеть, состоящая из двух областей: область с низкой проницаемостью и тонкими капиллярами окружена областью с высокой проницаемостью и толстыми капиллярами, изначально насыщенными смачивающими и несмачивающими несжимаемыми жидкостями соответственно. Капиллярное равновесие устанавливается за счет противоточной пропитки внутренней области. Исследована зависимость насыщенности смачивающей жидкости в областях от времени и капиллярного давления от текущей насыщенности. Получено качественное соответствие известным экспериментальным и теоретическим результатам, что в дальнейшем позволит использовать эту сетевую модель для проверки осредненных моделей капиллярной неравновесности. Во второй задаче рассматривается двухфазное вытеснение, при котором сеть изначально насыщается несмачивающей жидкостью. Затем смачивающая жидкость вводится через границу с постоянным расходом. Анализируется распределение насыщенности вдоль оси, направленной вдоль приложенного градиента давления, для различных моментов времени при различных значениях коэффициентов поверхностного натяжения. Результаты расчетов показывают, что при более низких значениях коэффициента поверхностного натяжения смачивающая жидкость предпочитает проникать через более толстые трубки, а при более высоких значениях — через более тонкие.
Ключевые слова: пористая среда, капиллярное давление, пропитка, многофазный поток, сетевые модели, периодически неоднородные среды.
Simulation of two-phase flow in porous media using an inhomogeneous network model
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 913-925We present an inhomogeneous two-dimensional network model of two-phase flow in porous media. The edges of the network are assumed to be capillary tubes of different radii. We propose a new algorithm for handling phase fluxes at the nodes of this network model. We perform two test problems and show that the two-phase flow in this inhomogeneous network model demonstrates properties that are analogous to those of real porous media: capillary imbibition, dependence of capillary pressure on saturation and effect of capillary forces in two-phase displacement. The two test problems are: the counter-current imbibition and the twophase displacement in a periodically inhomogeneous porous medium. In the former problem, we implement a network consisting of two regions: a region of low-permeability with thin capillaries surrounded by a region of high-permeability with thick capillaries, initially saturated with wetting and nonwetting incompressible fluids, respectively. Capillary equilibrium is established due to counter-current imbibition by a region. We examine the dependence: of saturation of the wetting fluid with respect to time in the regions, and of capillary pressure on the current saturation. We have obtained a qualitative agreement with the known experimental and theoretical results, which will further allow us to use this network model to verify homogenized models of capillary nonequilibrium. In the latter problem, we consider the two-phase displacement, where the network is initially saturated with nonwetting fluid. Then wetting fluid is injected through a boundary at a constant rate. We analyze the saturation with respect to the axis which is along the applied pressure gradient for various moments in time with various values of coefficients of surface tension. The results show that for lower values of coefficient of surface tension, the wetting fluid prefers to invade through the thicker tubes, and in the case of higher values, through thinner tubes.
-
Численное исследование устойчивости пространственнопериодических вихревых структур изотермической электроконвекции жидких диэлектриков в плоскопараллельной системе электродов
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 91-98Исследуется устойчивость пространственно-периодических диссипативных структур изотермической электроконвекции в плоском слое вязкой несжимаемой слабопроводящей жидкости с униполярной инжекционной проводимостью.
Numerical investigation of spatially periodic rolls structures of liquid dielectrics isothermal electro–convection in a plane–parallel electrode system
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 91-98Views (last year): 1. Citations: 1 (RSCI).Isothermal electroconvection in a dielectric liquid arising in a plane-parallel electrode system due to unipolar injection of charges from the cathode is considered. Spatially periodic rolls structures stability is investigated.
-
Приближенная модель осесимметричного течения несжимаемой жидкости в бесконечно длинном круглом цилиндре, стенки которого составлены из упругих колец, основанная на решениях уравнения Кортевега – де Фриза
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 375-394Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.
Ключевые слова: приближенная модель кровотока, сосуд из упругих колец, уравнение Кортевега – де Фриза, кноидальная волна, солитон, вырожденная кноидальная волна, задача Коши.
Approximate model of an axisymmetric flow of a non-compressible fluid in an infinitely long circular cylinder, the walls of which are composed of elastic rings, based on solutions of the Korteweg – de Vries equation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 375-394An approximate mathematical model of blood flow in an axisymmetric blood vessel is studied. Such a vessel is understood as an infinitely long circular cylinder, the walls of which consist of elastic rings. Blood is considered as an incompressible fluid flowing in this cylinder. Increased pressure causes radially symmetrical stretching of the elastic rings. Following J. Lamb, the rings are located close to each other so that liquid does not flow between them. To mentally realize this, it is enough to assume that the rings are covered with an impenetrable film that does not have elastic properties. Only rings have elasticity. The considered model of blood flow in a blood vessel consists of three equations: the continuity equation, the law of conservation of momentum and the equation of state. An approximate procedure for reducing the equations under consideration to the Korteweg – de Vries (KdV) equation is considered, which was not fully considered by J. Lamb, only to establish the dependence of the coefficients of the KdV equation on the physical parameters of the considered model of incompressible fluid flow in an axisymmetric vessel. From the KdV equation, by a standard transition to traveling waves, ODEs of the third, second and first orders are obtained, respectively. Depending on the different cases of arrangement of the three stationary solutions of the first-order ODE, a cnoidal wave and a soliton are standardly obtained. The main attention is paid to an unbounded periodic solution, which we call a degenerate cnoidal wave. Mathematically, cnoidal waves are described by elliptic integrals with parameters defining amplitudes and periods. Soliton and degenerate cnoidal wave are described by elementary functions. The hemodynamic meaning of these types of decisions is indicated. Due to the fact that the sets of solutions to first-, second- and third-order ODEs do not coincide, it has been established that the Cauchy problem for second- and third-order ODEs can be specified at all points, and for first-order ODEs only at points of growth or decrease. The Cauchy problem for a first-order ODE cannot be specified at extremum points due to the violation of the Lipschitz condition. The degeneration of the cnoidal wave into a degenerate cnoidal wave, which can lead to rupture of the vessel walls, is numerically illustrated. The table below describes two modes of approach of a cnoidal wave to a degenerate cnoidal wave.
-
Моделирование одномерных нелинейных пульсовых волн в эластичных сосудах на основе решеточных уравнений Больцмана
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 707-722В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.
В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.
В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.
The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722Views (last year): 2.In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.
In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.
Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.
-
Математические и вычислительные проблемы, связанные с образованием структур в сложных системах
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 805-815В данной работе рассматривается система уравнений магнитной гидродинамики (МГД). Найденные точные решения описывают течения жидкости в пористой среде и связаны с вопросами разработки кернового симулятора и задачами управления параметрами несжимаемой жидкости и направлены на создание отечественной технологии «цифровое месторождение». Центральной проблемой, связанной с использованием вычислительной техники, являются сеточные аппроксимации большой размерности и суперЭВМ высокой производительности с большим числом параллельно работающих микропроцессоров. В качестве возможной альтернативы сеточным аппроксимациям большой размерности разрабатываются кинетические методы решения дифференциальных уравнений и методы «склейки» точных решений на грубых сетках. Сравнительный анализ эффективности вычислительных систем позволяет сделать вывод о необходимости развития организации вычислений, основанных на целочисленной арифметике в сочетании с универсальными приближенными методами. Предложен класс точных решений системы Навье – Стокса, описывающий трехмерные течения для несжимаемой жидкости, а также точные решения нестационарной трехмерной магнитной гидродинамики. Эти решения важны для практических задач управляемой динамики минерализованных флюидов, а также для создания библиотек тестов для верификации приближенных методов. Выделены ряд явлений, связанных с образованием макроскопических структур за счет высокой интенсивности взаимодействия элементов пространственно однородных систем, а также их возникновение за счет линейного пространственного переноса в пространственно-неоднородных системах. Принципиальным является то, что возникновение структур — это следствие разрывности операторов в нормах законов сохранения. Наиболее разработанной и универсальной является теория вычислительных методов для линейных задач. Поэтому с этой точки зрения важными являются процедуры «погружения» нелинейных задач в общие классы линейных за счет изменения исходной размерности описания и расширения функциональных пространств. Отождествление функциональных решений с функциями позволяет вычислять интегральные средние неизвестной, но в то же время ее нелинейные суперпозиции, вообще говоря, не являются слабыми пределами нелинейных суперпозиций приближений метода, т.е. существуют функциональные решения, которые не являются обобщенными в смысле С. Л. Соболева.
Mathematical and computational problems associated with the formation of structures in complex systems
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 805-815In this paper, the system of equations of magnetic hydrodynamics (MHD) is considered. The exact solutions found describe fluid flows in a porous medium and are related to the development of a core simulator and are aimed at creating a domestic technology «digital deposit» and the tasks of controlling the parameters of incompressible fluid. The central problem associated with the use of computer technology is large-dimensional grid approximations and high-performance supercomputers with a large number of parallel microprocessors. Kinetic methods for solving differential equations and methods for «gluing» exact solutions on coarse grids are being developed as possible alternatives to large-dimensional grid approximations. A comparative analysis of the efficiency of computing systems allows us to conclude that it is necessary to develop the organization of calculations based on integer arithmetic in combination with universal approximate methods. A class of exact solutions of the Navier – Stokes system is proposed, describing three-dimensional flows for an incompressible fluid, as well as exact solutions of nonstationary three-dimensional magnetic hydrodynamics. These solutions are important for practical problems of controlled dynamics of mineralized fluids, as well as for creating test libraries for verification of approximate methods. A number of phenomena associated with the formation of macroscopic structures due to the high intensity of interaction of elements of spatially homogeneous systems, as well as their occurrence due to linear spatial transfer in spatially inhomogeneous systems, are highlighted. It is fundamental that the emergence of structures is a consequence of the discontinuity of operators in the norms of conservation laws. The most developed and universal is the theory of computational methods for linear problems. Therefore, from this point of view, the procedures of «immersion» of nonlinear problems into general linear classes by changing the initial dimension of the description and expanding the functional spaces are important. Identification of functional solutions with functions makes it possible to calculate integral averages of an unknown, but at the same time its nonlinear superpositions, generally speaking, are not weak limits of nonlinear superpositions of approximations of the method, i.e. there are functional solutions that are not generalized in the sense of S. L. Sobolev.
-
Разностные схемы расщепления для системы одномерных уравнений гемодинамики
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 459-488Работа посвящена построению и анализу разностных схем для системы уравнений гемодинамики, полученной осреднением уравнений гидродинамики вязкой несжимаемой жидкости по поперечному сечению сосуда. Рассматриваются модели крови как идеальной и как вязкой ньютоновской жидкости. Предложены разностные схемы, аппроксимирующие уравнения со вторым порядком по пространственной переменной. Алгоритмы расчета по построенным схемам основаны на методе расщепления по физическим процессам, в рамках которого на одном шаге по времени уравнения модели рассматриваются раздельно и последовательно. Практическая реали- зация предложенных схем приводит к последовательному решению на каждом шаге по времени двух линейных систем с трехдиагональными матрицами. Показано, что схемы являются $\rho$-устойчивыми при незначительных ограничениях на шаг по времени в случае достаточно гладких решений.
При решении задачи с известным аналитическим решением показано, что имеет место сходимость численного решения со вторым порядком по пространственной переменной в широком диапазоне значений шага сетки. При проведении вычислительных экспериментов по моделированию течения крови в модельных сосудистых системах производилось сравнение предложенных схем с такими известными явными схемами, как схема Лакса – Вендроффа, Лакса – Фридрихса и МакКормака. При решении задач показано, что результаты, полученные с помощью предложенных схем, близки к результатам расчетов, полученных по другим вычислительными схемам, в том числе построенным на основе других методов дискретизации. Показано, что в случае разных пространственных сеток время расчетов для предложенных схем значительно меньше, чем в случае явных схем, несмотря на необходимость решения на каждом шаге систем линейных уравнений. Недостатками схем является ограничение на шаг по времени в случае разрывных или сильно меняющихся решений и необходимость использования экстраполяции значений в граничных точках сосудов. В связи с этим актуальными для дальнейших исследований являются вопросы об адаптации схем расщепления к решению задач с разрывными решениями и в случаях специальных типов условий на концах сосудов.
Difference splitting schemes for the system of one-dimensional equations of hemodynamics
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.
For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.
-
Неявный алгоритм решения уравнений движения несжимаемой жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.
В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.
В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.
Ключевые слова: гидродинамика, газовая динамика, уравнения Навье – Стокса, метод расщепления по физическим переменным.
Implicit algorithm for solving equations of motion of incompressible fluid
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1009-1023A large number of methods have been developed to solve the Navier – Stokes equations in the case of incompressible flows, the most popular of which are methods with velocity correction by the SIMPLE algorithm and its analogue — the method of splitting by physical variables. These methods, developed more than 40 years ago, were used to solve rather simple problems — simulating both stationary flows and non-stationary flows, in which the boundaries of the calculation domain were stationary. At present, the problems of computational fluid dynamics have become significantly more complicated. CFD problems are involving the motion of bodies in the computational domain, the motion of contact boundaries, cavitation and tasks with dynamic local adaptation of the computational mesh. In this case the computational mesh changes resulting in violation of the velocity divergence condition on it. Since divergent velocities are used not only for Navier – Stokes equations, but also for all other equations of the mathematical model of fluid motion — turbulence, mass transfer and energy conservation models, violation of this condition leads to numerical errors and, often, to undivergence of the computational algorithm.
This article presents an implicit method of splitting by physical variables that uses divergent velocities from a given time step to solve the incompressible Navier – Stokes equations. The method is developed to simulate flows in the case of movable and contact boundaries treated in the Euler paradigm. The method allows to perform computations with the integration step exceeding the explicit time step by orders of magnitude (Courant – Friedrichs – Levy number $CFL\gg1$). This article presents a variant of the method for incompressible flows. A variant of the method that allows to calculate the motion of liquid and gas at any Mach numbers will be published shortly. The method for fully compressible flows is implemented in the software package FlowVision.
Numerical simulating classical fluid flow around circular cylinder at low Reynolds numbers ($50 < Re < 140$), when laminar flow is unsteady and the Karman vortex street is formed, are presented in the article. Good agreement of calculations with the experimental data published in the classical works of Van Dyke and Taneda is demonstrated.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"