Результаты поиска по 'проницаемость':
Найдено статей: 16
  1. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

    Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  2. Шаббир К.У., Извеков О.Я., Конюхов А.В.
    Моделирование двухфазного течения в пористых средах с использованием неоднородной сетевой модели
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 913-925

    Представлена неоднородная двумерная сетевая модель двухфазного течения в пористых средах. Предполагается, что ребра сети представляют собой капиллярные трубки разного радиуса. Предложен новый алгоритм управления фазовыми потоками в узлах этой сетевой модели. Показано, что сетевая модель демонстрирует свойства, аналогичные свойствам реальных пористых сред: капиллярная пропитка, зависимость капиллярного давления от насыщенности и влияние капиллярных сил при двухфазном течении. Было решено две тестовые задачи: противоточная пропитка пористого блока и двухфазное течение в периодически неоднородной пористой среде. В первой задаче реализована сеть, состоящая из двух областей: область с низкой проницаемостью и тонкими капиллярами окружена областью с высокой проницаемостью и толстыми капиллярами, изначально насыщенными смачивающими и несмачивающими несжимаемыми жидкостями соответственно. Капиллярное равновесие устанавливается за счет противоточной пропитки внутренней области. Исследована зависимость насыщенности смачивающей жидкости в областях от времени и капиллярного давления от текущей насыщенности. Получено качественное соответствие известным экспериментальным и теоретическим результатам, что в дальнейшем позволит использовать эту сетевую модель для проверки осредненных моделей капиллярной неравновесности. Во второй задаче рассматривается двухфазное вытеснение, при котором сеть изначально насыщается несмачивающей жидкостью. Затем смачивающая жидкость вводится через границу с постоянным расходом. Анализируется распределение насыщенности вдоль оси, направленной вдоль приложенного градиента давления, для различных моментов времени при различных значениях коэффициентов поверхностного натяжения. Результаты расчетов показывают, что при более низких значениях коэффициента поверхностного натяжения смачивающая жидкость предпочитает проникать через более толстые трубки, а при более высоких значениях — через более тонкие.

    Shabbir K.U., Izvekov O.Ya., Konyukhov A.V.
    Simulation of two-phase flow in porous media using an inhomogeneous network model
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 913-925

    We present an inhomogeneous two-dimensional network model of two-phase flow in porous media. The edges of the network are assumed to be capillary tubes of different radii. We propose a new algorithm for handling phase fluxes at the nodes of this network model. We perform two test problems and show that the two-phase flow in this inhomogeneous network model demonstrates properties that are analogous to those of real porous media: capillary imbibition, dependence of capillary pressure on saturation and effect of capillary forces in two-phase displacement. The two test problems are: the counter-current imbibition and the twophase displacement in a periodically inhomogeneous porous medium. In the former problem, we implement a network consisting of two regions: a region of low-permeability with thin capillaries surrounded by a region of high-permeability with thick capillaries, initially saturated with wetting and nonwetting incompressible fluids, respectively. Capillary equilibrium is established due to counter-current imbibition by a region. We examine the dependence: of saturation of the wetting fluid with respect to time in the regions, and of capillary pressure on the current saturation. We have obtained a qualitative agreement with the known experimental and theoretical results, which will further allow us to use this network model to verify homogenized models of capillary nonequilibrium. In the latter problem, we consider the two-phase displacement, where the network is initially saturated with nonwetting fluid. Then wetting fluid is injected through a boundary at a constant rate. We analyze the saturation with respect to the axis which is along the applied pressure gradient for various moments in time with various values of coefficients of surface tension. The results show that for lower values of coefficient of surface tension, the wetting fluid prefers to invade through the thicker tubes, and in the case of higher values, through thinner tubes.

  3. Зленко Д.В., Красильников П.М.
    Молекулярное моделирование липидных бислойных мембран
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 423-436

    Построена полноатомная модель молекулы липида (дистеароилфосфатидилхолина, ДСФХ) и фрагмента липидной мембраны, необходимая для описания свойств липидных мембран в рамках метода молекулярной динамики. Построенная модель устойчива во времени, обладает термодинамически адекватным распределением энергии по степеням свободы системы и имеет параметры, хорошо согласующиеся с параметрами реального ДСФХ. С использованием построенной модели проведены расчеты проницаемости липидного бислоя для ионов натрия, воды и кислорода. Получены профили подвижности и коэффициентов диффузии этих частиц при их движении сквозь бислой, на основании которых оценены соответствующие коэффициенты проницаемости модельной мембраны. Показано, что липидные мембраны обладают значительным диффузионным сопротивлением не только для молекулы воды и иона натрия, но и для неполярной молекулы кислорода. Предложены теоретические методы расчета потоков исследуемых частиц через липидный бислой, а также методы оценки коэффициентов распределения малых молекул в системах липидный бислой - вода.

    Zlenko D.V., Krasilnikov P.M.
    Permeability of lipid membranes. A molecular dynamic study
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 423-436

    A correct model of lipid molecule (distearoylphosphatidylcholine, DSPC) and lipid membrane in water was constructed. Model lipid membrane is stable and has a reliable energy distribution among degrees of freedom. Also after equilibration model system has spatial parameters very similar to those of real DSPC membrane in liquid-crystalline phase. This model was used for studying of lipid membrane permeability to oxygen and water molecules and sodium ion. We obtained the values for transmembrane mobility and diffusion coefficients profiles, which we used for effective permeability coefficients calculation. We found lipid membranes to have significant diffusional resistance to penetration not only by charged particles, such as ions, but also by nonpolar molecules, such as oxygen molecule. We propose theoretical approach for calculation of particle flow across a membrane, as well as methods for estimation of distribution coefficients between bilayer and water phase.

    Views (last year): 20. Citations: 2 (RSCI).
  4. Бруяка В.А.
    Моделирование течения тонкого слоя жидкости с учетом разрывов и шероховатости границ
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 795-806

    Рассматривается задача о течении жидкости в тонком слое между шероховатыми поверхностями с учетом их сближения и разрывов слоя в местах гребневого контакта микронеровностей. Пространство между поверхностями рассматривается как пористая среда с переменной проницаемостью, зависящей от микропрофиля шероховатости и степени сближения поверхностей. Для получения зависимости проницаемости от сближения поверхностей выполняется расчет течения жидкости на малом участке слоя (100 мкм), для которого микропрофиль шероховатости моделируется с помощью фрактальной функции Вейерштрасса – Мандельброта. Расчетной является трехмерная область, заполняющая пустоты между выступами и впадинами микропрофилей поверхностей, расположенных на некотором расстоянии друг от друга. Сближение поверхностей приводит к тому, что в местах пересечения гребней микронеровностей появляются разрывы расчетной области. При заданном сближении и граничных условиях рассчитывается расход жидкости и перепад давления, на основании которых вычисляется проницаемость эквивалентной пористой среды. Результаты расчетов проницаемости, полученные для различных сближений шероховатых поверхностей, аппроксимированы степенной функцией. Это позволяет рассчитывать характеристики течения в тонком слое переменной толщины, имеющем характерную длину на несколько порядков больше масштабов шероховатости. В качестве примера, иллюстрирующего практическое применение данной методики, получено решение задачи о течении жидкости в зазоре между заготовкой и матрицей при гидропрессовании в трехмерной постановке при условии линейного уменьшения проницаемости эквивалентного пористого слоя.

    In this paper a fluid flow between two close located rough surfaces depending on their location and discontinuity in contact areas is investigated. The area between surfaces is considered as the porous layer with the variable permeability, depending on roughness and closure of surfaces. For obtaining closure-permeability function, the flow on the small region of surfaces (100 $\mu$m) is modeled, for which the surfaces roughness profile created by fractal function of Weierstrass – Mandelbrot. The 3D-domain for this calculation fill out the area between valleys and peaks of two surfaces, located at some distance from each other. If the surfaces get closer, a contacts between roughness peaks will appears and it leads to the local discontinuities in the domain. For the assumed surfaces closure and boundary conditions the mass flow and pressure drop is calculated and based on that, permeability of the equivalent porous layer is evaluated.The calculation results of permeability obtained for set of surfaces closure were approximated by a polynom. This allows us to calculate the actual flow parameters in a thin layer of variable thickness, the length of which is much larger than the scale of the surface roughness. As an example, showing the application of this technique, flow in the gap between the billet and conical die in 3D-formulation is modeled. In this problem the permeability of an equivalent porous layer calculated for the condition of a linear decreased gap.

  5. Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.

    Umavovskiy A.V.
    Data-driven simulation of a two-phase flow in heterogenous porous media
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 779-792

    The numerical methods used to simulate the evolution of hydrodynamic systems require the considerable use of computational resources thus limiting the number of possible simulations. The data-driven simulation technique is one promising approach to the development of heuristic models, which may speed up the study of such models. In this approach, machine learning methods are used to tune the weights of an artificial neural network that predicts the state of a physical system at a given point in time based on initial conditions. This article describes an original neural network architecture and a novel multi-stage training procedure which create a heuristic model of a two-phase flow in a heterogeneous porous medium. The neural network-based model predicts the states of the grid cells at an arbitrary timestep (within the known constraints), taking in only the initial conditions: the properties of the heterogeneous permeability of the medium and the location of sources and sinks. The proposed model requires orders of magnitude less processor time in comparison with the classical numerical method, which served as a criterion for evaluating the effectiveness of the trained model. The proposed architecture includes a number of subnets trained in various combinations on several datasets. The techniques of adversarial training and weight transfer are utilized.

  6. Рухленко А.С., Злобина К.Е., Гурия Г.Т.
    Гидродинамическая активация свертывания крови в стенозированных сосудах. Теоретический анализ
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 155-183

    В настоящей работе исследованы гидродинамические механизмы активации плазменного звена системы свертывания крови при числах Рейнольдса в интервале от 10 до 500. Условия активации изучены в рамках модели, предполагающей, что проницаемость сосудистых стенок по отношению к первичным активаторам системы свертывания крови возрастает с увеличением касательного напряжения. Обнаружено несколько характерных сценариев развития процессов тромбообразования. Изучено влияние изменения топологии течения на активацию внутрисосудистого свертывания крови. Установлено, что пороговая активация плазменного звена системы гемостаза в стенозированных сосудах может иметь место не только при ослаблении, но и при интенсификации кровотока. В заключительной части работы обсуждены возможные медицинские приложения полученных результатов.

    Rukhlenko A.S., Zlobina K.E., Guria G.T.
    Hydrodynamical activation of blood coagulation in stenosed vessels. Theoretical analysis
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 155-183

    The mechanisms of hydrodynamical activation of blood coagulation system are investigated in stenosed vessels for a wide range of Reynolds number values (from 10 up to 500). It is assumed that the vessel wall permeability for procoagulant factors rapidly increases when wall shear stress exceeds specific threshold value. A number of patterns of blood coagulation processes development are described. The influence of blood flow topology changes on activation of blood coagulation is explored. It is established that not only blood flow decrease, but also its increase may promote activation of blood coagulation. It was found that dependence of thrombogenic danger of stenosis on vessel lumen blockage ratio is non-monotonic. The relevance of obtained theoretical results for clinical practice is discussed.

    Views (last year): 2. Citations: 5 (RSCI).
Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"