Результаты поиска по 'редукция':
Найдено статей: 14
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 209-212
  2. Решена задача восстановления элемента f бесконечномерного гильбертова пространства L2(X) по результатам измерений конечного набора его линейных функционалов, искаженным (случайной) погрешностью без априорных данных об f, получено семейство линейных подпространств максимальной размерности, проекции элемента f на которые допускают оценки с заданной точностью. Эффективный ранг ρ(δ) задачи оценивания определен как функция, равная максимальной размерности ортогональной составляющей Pf элемента f, которая может быть оценена с погрешностью, не превосходящей δ. Приведен пример восстановления спектра излучения по конечному набору экспериментальных данных.

    Chulichkov A.I., Yuan B.
    Effective rank of a problem of function estimation based on measurement with an error of finite number of its linear functionals
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 189-202

    The problem of restoration of an element f of Euclidean functional space  L2(X) based on the results of measurements of a finite set of its linear functionals, distorted by (random) error is solved. A priori data aren't assumed. Family of linear subspaces of the maximum (effective) dimension for which the projections of element to them allow estimates with a given accuracy, is received. The effective rank ρ(δ) of the estimation problem is defined as the function equal to the maximum dimension of an orthogonal component Pf of the element f which can be estimated with a error, which is not surpassed the value δ. The example of restoration of a spectrum of radiation based on a finite set of experimental data is given.

  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 5-8
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  5. Бреев А.И., Шаповалов А.В., Козлов А.В.
    Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443

    В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.

    Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.

    В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.

    Breev A.I., Shapovalov A.V., Kozlov A.V.
    Integration the relativistic wave equations in Bianchi IX cosmology model
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443

    We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.

    Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.

    The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.

    Views (last year): 5.
  6. Горр Г.В., Щетинина Е.К.
    Новая форма уравнений в моделировании движения тяжелого твердого тела
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884

    В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.

    Gorr G.V., Shchetinina E.K.
    A new form of differential equations in modeling of the motion of a heavy solid
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884

    The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.

    Views (last year): 6.
  7. Гладин Е.Л., Бородич Е.Д.
    Редукция дисперсии для минимаксных задач с небольшой размерностью одной из переменных
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 257-275

    Статья посвящена выпукло-вогнутым седловым задачам, в которых целевая функция является суммой большого числа слагаемых. Такие задачи привлекают значительное внимание математического сообщества в связи с множеством приложений в машинном обучении, включая adversarial learning, adversarial attacks и robust reinforcement learning, и это лишь некоторые из них. Отдельные функции в сумме обычно представляют собой ошибку, связанную с объектом из выборки. Кроме того, формулировка допускает (возможно, негладкий) композитный член. Такие слагаемые часто отражают регуляризацию в задачах машинного обучения. Предполагается, что размерность одной из групп переменных относительно мала (около сотни или меньше), а другой — велика. Такой случай возникает, например, при рассмотрении двойственной формулировки задачи минимизации с умеренным числом ограничений. Предлагаемый подход основан на использовании метода секущей плоскости Вайды для минимизации относительно внешнего блока переменных. Этот алгоритм оптимизации особенно эффективен, когда размерность задачи не очень велика. Неточный оракул для метода Вайды вычисляется через приближенное решение внутренней задачи максимизации, которая решается ускоренным алгоритмом с редукцией дисперсии Katyusha. Таким образом, мы используем структуру задачи для достижения быстрой сходимости. В исследовании получены отдельные оценки сложности для градиентов различных компонент относительно различных переменных. Предложенный подход накладывает слабые предположения о целевой функции. В частности, не требуется ни сильной выпуклости, ни гладкости относительно низкоразмерной группы переменных. Количество шагов предложенного алгоритма, а также арифметическая сложность каждого шага явно зависят от размерности внешней переменной, отсюда предположение, что она относительно мала.

    Gladin E.L., Borodich E.D.
    Variance reduction for minimax problems with a small dimension of one of the variables
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 257-275

    The paper is devoted to convex-concave saddle point problems where the objective is a sum of a large number of functions. Such problems attract considerable attention of the mathematical community due to the variety of applications in machine learning, including adversarial learning, adversarial attacks and robust reinforcement learning, to name a few. The individual functions in the sum usually represent losses related to examples from a data set. Additionally, the formulation admits a possibly nonsmooth composite term. Such terms often reflect regularization in machine learning problems. We assume that the dimension of one of the variable groups is relatively small (about a hundred or less), and the other one is large. This case arises, for example, when one considers the dual formulation for a minimization problem with a moderate number of constraints. The proposed approach is based on using Vaidya’s cutting plane method to minimize with respect to the outer block of variables. This optimization algorithm is especially effective when the dimension of the problem is not very large. An inexact oracle for Vaidya’s method is calculated via an approximate solution of the inner maximization problem, which is solved by the accelerated variance reduced algorithm Katyusha. Thus, we leverage the structure of the problem to achieve fast convergence. Separate complexity bounds for gradients of different components with respect to different variables are obtained in the study. The proposed approach is imposing very mild assumptions about the objective. In particular, neither strong convexity nor smoothness is required with respect to the low-dimensional variable group. The number of steps of the proposed algorithm as well as the arithmetic complexity of each step explicitly depend on the dimensionality of the outer variable, hence the assumption that it is relatively small.

  8. Токарев А.А., Родин Н.О., Вольперт В.А.
    Бистабильность и затухающие колебания в гомогенной модели вирусной инфекции
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 111-124

    Развитие вирусной инфекции в организме представляет собой сложный процесс, зависящий от конкуренции между размножением вируса в клетках организма-хозяина и иммунным ответом. В данной работе для исследования различных режимов развития инфекции мы анализируем общую математическую модель иммунного ответа организма на вирусную инфекцию. Модель представляет собой систему из двух обыкновенных дифференциальных уравнений, описывающих изменение обезразмеренных концентраций вируса и иммунных клеток. Скорость пролиферации иммунных клеток представлена колоколообразной функцией концентрации вируса. Эта функция возрастает при малых концентрациях вируса, описывая антиген-стимулированную клональную экспансию иммунных клеток, и снижается при достаточно высоких концентрациях вируса, описывая подавление пролиферации иммунных клеток инфекцией. В зависимости от вирулентности вируса, силы иммунного ответа и начальной вирусной нагрузки, модель предсказывает несколько сценариев: (а) инфекция может быть полностью устранена, (б) она может оставаться на низком уровне при высокой концентрации иммунных клеток; (в) иммунная система может быть существенно истощена или (г) полностью истощена, что сопровождается (в, г) высокой концентрацией вируса. Анализ модели показывает, что концентрация вируса может колебаться по мере постепенного приближения к своему равновесному значению. Рассматриваемая модель может быть получена при редукции более общей модели — с дополнительным уравнением для общей вирусной нагрузки, в предположении, что общая вирусная нагрузка является быстрой переменной. В случае медленной кинетики общей вирусной нагрузки следует использовать указанную более общую модель.

    Tokarev A.A., Rodin N.O., Volpert V.A.
    Bistability and damped oscillations in the homogeneous model of viral infection
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 111-124

    The development of a viral infection in the organism is a complex process which depends on the competition race between virus replication in the host cells and the immune response. To study different regimes of infection progression, we analyze the general mathematical model of immune response to viral infection. The model consists of two ODEs for virus and immune cells non-dimensionalized concentrations. The proliferation rate of immune cells in the model is represented by a bell-shaped function of the virus concentration. This function increases for small virus concentrations describing the antigen-stimulated clonal expansion of immune cells, and decreases for sufficiently high virus concentrations describing down-regulation of immune cells proliferation by the infection. Depending on the virus virulence, strength of the immune response, and the initial viral load, the model predicts several scenarios: (a) infection can be completely eliminated, (b) it can remain at a low level while the concentration of immune cells is high; (c) immune cells can be essentially exhausted, or (d) completely exhausted, which is accompanied (c, d) by high virus concentration. The analysis of the model shows that virus concentration can oscillate as it gradually converges to its equilibrium value. We show that the considered model can be obtained by the reduction of a more general model with an additional equation for the total viral load provided that this equation is fast. In the case of slow kinetics of the total viral load, this more general model should be used.

  9. Потапов И.И., Потапов Д.И.
    Модель установившегося течения реки в поперечном сечении изогнутого русла
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178

    Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.

    Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.

    Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I.
    Model of steady river flow in the cross section of a curved channel
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1163-1178

    Modeling of channel processes in the study of coastal channel deformations requires the calculation of hydrodynamic flow parameters that take into account the existence of secondary transverse currents formed at channel curvature. Three-dimensional modeling of such processes is currently possible only for small model channels; for real river flows, reduced-dimensional models are needed. At the same time, the reduction of the problem from a three-dimensional model of the river flow movement to a two-dimensional flow model in the cross-section assumes that the hydrodynamic flow under consideration is quasi-stationary and the hypotheses about the asymptotic behavior of the flow along the flow coordinate of the cross-section are fulfilled for it. Taking into account these restrictions, a mathematical model of the problem of the a stationary turbulent calm river flow movement in a channel cross-section is formulated. The problem is formulated in a mixed formulation of velocity — “vortex – stream function”. As additional conditions for problem reducing, it is necessary to specify boundary conditions on the flow free surface for the velocity field, determined in the normal and tangential direction to the cross-section axis. It is assumed that the values of these velocities should be determined from the solution of auxiliary problems or obtained from field or experimental measurement data.

    To solve the formulated problem, the finite element method in the Petrov – Galerkin formulation is used. Discrete analogue of the problem is obtained and an algorithm for solving it is proposed. Numerical studies have shown that, in general, the results obtained are in good agreement with known experimental data. The authors associate the obtained errors with the need to more accurately determine the circulation velocities field at crosssection of the flow by selecting and calibrating a more appropriate model for calculating turbulent viscosity and boundary conditions at the free boundary of the cross-section.

  10. Павлов Е.А., Осипов Г.В.
    Синхронизация и хаос в сетях связанных отображений в приложении к моделированию сердечной динамики
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 439-453

    На основе отображения, построенного путем упрощения и редукции модели Луо–Руди, исследуется динамика ансамблей связанных элементов в приложении к моделированию пространственно-временных процессов в сердечной мышце. В частности, представлены возможности отображения в воспроизведении различных режимов сердечной активности, в том числе возбудимого и осцилляторного режимов. Рассмотрена динамика цепочек и решеток связанных осцилляторных элементов со случайным распределением индивидуальных частот. Обнаружены эффекты кластерной синхронизации и переход к глобальной синхронизации при увеличении силы связи. Проанализировано распространение импульсов по цепочке, а также концентрических и спиральных волн в двумерной решетке связанных отображений, моделирующих динамику возбудимых сред. Изучены характеристики спиральной волны в зависимости от изменения индивидуальных параметров и связи. Проведено исследование смешанных ансамблей, состоящих из возбудимых и осцилляторных элементов с градиентным изменением свойств, в том числе в приложении к задаче описания нормального и патологического характера функционирования синоатриального узла.

    Pavlov E.A., Osipov G.V.
    Synchronization and chaos in networks of coupled maps in application to modeling of cardiac dynamics
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 439-453

    The dynamics of coupled elements’ ensembles are investigated in the context of description of spatio-temporal processes in the myocardium. Basic element is map-based model constructed by simplification and reduction of Luo-Rudy model. In particular, capabilities of the model in replication of different regimes of cardiac activity are shown, including excitable and oscillatory regimes. The dynamics of 1D and 2D lattices of coupled oscillatory elements with a random distribution of individual frequencies are considered. Effects of cluster synchronization and transition to global synchronization by increasing of coupling strength are discussed. Impulse propagation in the chain of excitable cells has been observed. Analysis of 2D lattice of excitable elements with target and spiral waves have been made. The characteristics of the spiral wave has been analyzed in depending on the individual parameters of the map and coupling strength between elements of the lattice. A study of mixed ensembles consisting of excitable and oscillatory elements with a gradient changing of the properties have been made, including the task for description of normal and pathological activity of the sinoatrial node.

    Citations: 3 (RSCI).
Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"