All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.
Ключевые слова: нелинейное уравнение параболического типа, уравнение теплопроводности, метод нулевого поля, метод коллокаций, радиальные базисные функции, метод граничных элементов.
Solution to a two-dimensional nonlinear heat equation using null field method
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.
-
Аппроксимация решения нестационарного уравнения теплопроводности методом вероятностных непрерывных асинхронных клеточных автоматов для одномерного случая
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 293-301В статье рассматривается решение задач теплопроводности с помощью метода непрерывных асинхронных клеточных автоматов. Продемонстрировано согласование распределения температуры в образце между клеточно-автоматной моделью и точным аналитическим решением уравнения теплопереноса в определенный момент времени, что говорит о целесообразном использовании данного метода моделирования. Получена зависимость между временем одного клеточно-автоматного взаимодействия и размерностью клеточно-автоматного поля.
Approximation of the solution of the non-stationary equation of heat conductivity by the method of probabilistic continuous asynchronous cellular automats for a one-dimensional case
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 293-301Views (last year): 10. Citations: 4 (RSCI).The solution of problems of heat conductivity by means of a method of continuous asynchronous cellular automats is considered in the article. Coordination of distribution of temperature in a sample at a given time between cellular automat model and the exact analytical solution of the equation of heattransfer is shown that speaks about expedient use of this method of modelling. Dependence between time of one cellular automatic interaction and dimension of a cellular automatic field is received.
-
Вычислительный алгоритм для изучения внутренних ламинарных потоков многокомпонентного газа с разномасштабными химическими процессами
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1169-1187Разработан вычислительный алгоритм для изучения химических процессов во внутренних течениях многокомпонентного газа при воздействии лазерного излучения. Математическая модель представляет собой уравнения газовой динамики с химическими реакциями при малых числах Маха с учетом диссипативных членов, которые описывают динамику вязкой теплопроводной среды с диффузией, химическими реакциями и подводом энергии посредством лазерного излучения. Для данной математической модели характерно наличие нескольких сильно различающихся между собой временных и пространственных масштабов. Вычислительный алгоритм построен на основе схемы расщепления по физическим процессам. Каждый шаг интегрирования по времени разбивается на следующие блоки: решение уравнений химической кинетики, решение уравнения для интенсивности излучения, решение уравнений конвекции – диффузии, расчет динамической составляющей давления и расчет коррекции вектора скорости. Решение жесткой системы уравнений химической кинетики проводится с помощью специализированной явной схемы второго порядка точности или подключаемым модулем RADAU5. Для нахождения конвективных членов в уравнениях применяются численные потоки Русанова и WENO-схема повышенного порядка аппроксимации. На основе полученного алгоритма разработан код с использованием технологии параллельных вычислений MPI. Созданный код использован для расчетов пиролиза этана с радикальными реакциями. Детально изучается формирование сверхравновесных концентраций радикалов по объему реактора. Проведено численное моделирование течения реакционного газа в плоской трубе с подводом лазерного излучения, востребованное для интерпретации экспериментальных результатов. Показано, что лазерное излучение увеличивает в разы конверсию этана и выходы целевых продуктов на коротких длинах ближе к входу в реакционную зону. Сокращение эффективной длины реакционной зоны позволяет предложить новые решения при проектировании реакторов конверсии этана в ценные углеводороды. Разработанные алгоритм и программа найдут свое применение в создании новых технологий лазерной термохимии.
Ключевые слова: компьютерное моделирование, уравнения газовой динамики с химическими реакциями, расщепление по физическим процессам, радикально-цепные реакции, лазерное излучение, пиролиз этана.
The computational algorithm for studying internal laminar flows of a multicomponent gas with different-scale chemical processes
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1169-1187The article presented the computational algorithm developed to study chemical processes in the internal flows of a multicomponent gas under the influence of laser radiation. The mathematical model is the gas dynamics’ equations with chemical reactions at low Mach numbers. It takes into account dissipative terms that describe the dynamics of a viscous heat-conducting medium with diffusion, chemical reactions and energy supply by laser radiation. This mathematical model is characterized by the presence of several very different time and spatial scales. The computational algorithm is based on a splitting scheme by physical processes. Each time integration step is divided into the following blocks: solving the equations of chemical kinetics, solving the equation for the radiation intensity, solving the convection-diffusion equations, calculating the dynamic component of pressure and calculating the correction of the velocity vector. The solution of a stiff system of chemical kinetics equations is carried out using a specialized explicit second-order accuracy scheme or a plug-in RADAU5 module. Numerical Rusanov flows and a WENO scheme of an increased order of approximation are used to find convective terms in the equations. The code based on the obtained algorithm has been developed using MPI parallel computing technology. The developed code is used to calculate the pyrolysis of ethane with radical reactions. The superequilibrium concentrations’ formation of radicals in the reactor volume is studied in detail. Numerical simulation of the reaction gas flow in a flat tube with laser radiation supply is carried out, which is in demand for the interpretation of experimental results. It is shown that laser radiation significantly increases the conversion of ethane and yields of target products at short lengths closer to the entrance to the reaction zone. Reducing the effective length of the reaction zone allows us to offer new solutions in the design of ethane conversion reactors into valuable hydrocarbons. The developed algorithm and program will find their application in the creation of new technologies of laser thermochemistry.
-
Численные исследования нестационарных режимов сопряженной естественной конвекции в пористой цилиндрической области (модель Дарси–Буссинеска)
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 179-191Проведено математическое моделирование нестационарных режимов естественной конвекции в замкнутой пористой цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного теплообмена с внешней средой. Краевая задача математической физики, сформулированная на основе модели Дарси–Буссинеска в безразмерных переменных «функция тока – температура», реализована численно методом конечных разностей. Детально проанализировано влияние проницаемости пористой среды 10–5≤Da<∞, отношения толщины твердой оболочки к внутреннему радиусу цилиндра 0.1≤h/L≤0.3, относительного коэффициента теплопроводности 1≤λ1,2≤20 и безразмерного времени 0≤τ≤1000 как на локальные распределения изолиний функции тока и температуры, так и на интегральные комплексы, отражающие интенсивность конвективного течения и теплопереноса.
Ключевые слова: сопряженный теплоперенос, естественная конвекция, приближение Дарси–Буссинеска, пористая цилиндрическая полость, нестационарный режим, численное моделирование.
Numerical simulation of unsteady conjugate natural convection in a cylindrical porous domain (Darcy–Boussinesq model)
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 179-191Views (last year): 4. Citations: 3 (RSCI).Mathematical simulation on unsteady natural convection in a closed porous cylindrical cavity having finite thickness heat-conducting solid walls in conditions of convective heat exchange with an environment has been carried out. A boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function and temperature on the basis of Darcy–Boussinesq model has been solved by finite difference method. Effect of a porous medium permeability 10–5≤Da<∞, ratio between a solid wall thickness and the inner radius of a cylinder 0.1≤h/L≤0.3, a thermal conductivity ratio 1≤λ1,2≤20 and a dimensionless time on both local distributions of isolines and isotherms and integral complexes reflecting an intensity of convective flow and heat transfer has been analyzed in detail.
-
Влияние состава угольной пыли на скорость распространения фронта горения по аэровзвеси с неоднородным распределением частиц
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 221-230Задача горения газовзвеси с неоднородным распределением частиц по пространству возникает, например, при сжигании взвеси угольной пыли в камерах сгорания энергетических установок и горелок. Неоднородное распределение частиц по пространству может существенно повлиять на скорость распространения фронта пламени по аэровзвеси угольной пыли. Представляют интерес исследование закономерности распространения фронта горения в газовзвеси при неравномерном распределении концентрации реагирующих частиц в воздухе, а также определение зависимости скорости распространения фронта горения от свойств угольной пыли и неоднородности пространственного ее распределения. Целью настоящей работы является численное исследование влияния неоднородного распределения частиц, а также состава аэровзвеси на скорость распространения фронта горения по аэровзвеси угольной пыли.
Разработана физико-математическая модель горения аэровзвеси угольной пыли с неоднородным распределением частиц угольной пыли по пространству. Физико-математическая постановка задачи учи- тывает выход горючих летучих компонентов из частиц при их нагреве, последующее реагирование летучих компонентов с воздухом, гетерогенную реакцию на поверхности частиц, зависимость коэффициента теплопроводности газа от температуры. Решение задачи проведено численно.
Проведено параметрическое исследование влияния массовой концентрации, содержания летучих компонентов и размера частиц угольной пыли на скорость горения взвеси угольной пыли в воздухе. Показано, что скорость горения больше для частиц с меньшим содержанием летучих компонентов. Сравнение скорости горения для частиц разного радиуса показало, что чем больше радиус частиц, тем меньше скорость горения аэровзвеси. Определено, что частицы с большей массовой концентрацией горят быстрее.
Проведен анализ влияния пространственного распределения частиц на скорость горения аэровзвеси. Показано, что скорость распространения фронта горения по аэровзвеси с неоднородным распределением частиц выше скорости распространения фронта горения по аэровзвеси с однородным распределением частиц. Показано, что неоднородное распределение частиц приводит к искривлению фронта горения. Чем меньше радиус частиц, тем сильнее искривляется фронт горения.
Ключевые слова: аэровзвесь, горение, выделение летучих компонентов, скорость распространения пламени.
The influence of the coal dust composition on the propagation speed of the combustion front of the coal dust with an inhomogeneous particle distribution in the air
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 221-230Views (last year): 18.The problem of the combustion of a gas suspension with an inhomogeneous distribution of particles over space occurs exists for the coal dust suspension combustion in combustion chambers and burners. The inhomogeneous distribution of particles in space can significantly affect the combustion velocity of the aerosolve of coal dust. The purpose of the present work is the numerically study the effect of the inhomogeneous distribution of particles and the composition of the coal dust on the combustion velocity of the coal dust in the air.
The physical and mathematical model of combustion of air-coal dust mixture with an inhomogeneous distribution of coal dust particles over space has been developed. The physical and mathematical formulation of the problem took into account the release of combustible volatile components from the particles upon their heating, the subsequent reaction of volatile components with air, a heterogeneous reaction on the surface of the particles, and the dependence of the thermal conductivity of the gas on temperature.
A parametric study was made of the effect of mass concentration, the content of volatile and the particle size of coal dust on the burning speed of a suspension of coal dust in the air. It is shown that the burning rate is greater for particles with a lower content of volatile components. The influence of the spatial distribution of particles on the burning rate of the coal-air mixture is analyzed. It is shown that the propagation velocity of the combustion front with respect to the suspension with an inhomogeneous particle distribution is higher than the propagation speed of the combustion front with respect to the suspension with a homogeneous particle distribution.
-
Моделирование анизотропной конвекции бинарной жидкости, насыщающей пористую среду
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 801-816В предположении анизотропии свойств жидкости и среды моделируется возникновение гравитационной конвекции в пористом прямоугольнике, насыщенном теплопроводной жидкостью с примесью и подогреваемом снизу. Рассматривается плоская задача на основе уравнений Дарси – Буссинеска для бинарной жидкости с учетом эффекта Соре. Устанавливаются условия, при которых система уравнений относительно функции тока, отклонений температуры и концентрации от равновесного состояния является косимметричной и возможно ответвление от механического равновесия непрерывного семейства стационарных движений.
Показано, что в условиях существования косимметрии имеются подобласти параметров, для которых критические значения температурного и концентрационного чисел Рэлея находятся по явным формулам. Для случая монотонной неустойчивости механического равновесия выведены формулы критических чисел Рэлея и приведены результаты подтверждающих вычислений.
Развита конечно-разностная дискретизация задачи второго порядка точности по пространственным переменным, сохраняющая косимметричность исследуемой системы. С помощью разработанной численной схемы проведен анализ устойчивости механического равновесия при различных комбинациях управляющих параметров.
На плоскости температурного и концентрационного чисел Рэлея представлены нейтральные кривые устойчивости механического равновесия и рассчитаны участки колебательной неустойчивости. Установлена зависимость от параметров термодиффузии концентрационного числа Рэлея, при котором колебательная неустойчивость предшествует монотонной. В общей ситуации, когда не выполняются условия косимметрии, выведенные формулы критических чисел Рэлея могут быть использованы для оценки порогов возникновения конвекции.
Ключевые слова: конвекция, бинарная жидкость, пористая среда, эффект Соре, анизотропия, косимметрия, метод конечных разностей.
Modeling of anisotropic convection for the binary fluid in porous medium
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 801-816We study an appearance of gravitational convection in a porous medium saturated by the double-diffusive fluid. The rectangle heated from below is considered with anisotropy of media properties. We analyze Darcy – Boussinesq equations for a binary fluid with Soret effect.
Resulting system for the stream function, the deviation of temperature and concentration is cosymmetric under some additional conditions for the parameters of the problem. It means that the quiescent state (mechanical equilibrium) loses its stability and a continuous family of stationary regimes branches off. We derive explicit formulas for the critical values of the Rayleigh numbers both for temperature and concentration under these conditions of the cosymmetry. It allows to analyze monotonic instability of mechanical equilibrium, the results of corresponding computations are presented.
A finite-difference discretization of a second-order accuracy is developed with preserving of the cosymmetry of the underlying system. The derived numerical scheme is applied to analyze the stability of mechanical equilibrium.
The appearance of stationary and nonstationary convective regimes is studied. The neutral stability curves for the mechanical equilibrium are presented. The map for the plane of the Rayleigh numbers (temperature and concentration) are displayed. The impact of the parameters of thermal diffusion on the Rayleigh concentration number is established, at which the oscillating instability precedes the monotonic instability. In the general situation, when the conditions of cosymmetry are not satisfied, the derived formulas of the critical Rayleigh numbers can be used to estimate the thresholds for the convection onset.
Keywords: convection, binary fluid, porous media, Soret effect, anisotropy, cosymmetry, finite-difference method.Views (last year): 27. -
Моделирование смешанной конвекции жидкости с переменной вязкостью в частично пористом горизонтальном канале с источником тепловыделения
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 95-107Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.
Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.
Ключевые слова: смешанная конвекция, зависящая от температуры вязкость, тепловыделяющий источник, пористая среда, открытый канал, метод конечных разностей.
Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107Views (last year): 34.Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.
Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.
-
О модификации метода покомпонентного спуска для решения некоторых обратных задач математической физики
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 301-316Статья посвящена решению некорректно поставленных задач математической физики для эллиптических и параболических уравнений, а именно задачи Коши для уравнения Гельмгольца и ретроспективной задачи Коши для уравнения теплопроводности с постоянными коэффициентами. Эти задачи сводятся к задачам выпуклой оптимизации в гильбертовом пространстве. Градиенты соответствующих функционалов вычисляются приближенно с помощью решения двух корректных задач. Предлагается метод решения исследуемых задач оптимизации — покомпонентный спуск в базисе из собственных функций связанного с задачей самосопряженного оператора. Если бы было возможно точное вычисление градиента, то этот метод давал бы сколь угодно точное решение задачи в зависимости от количества рассматриваемых элементов базиса. В реальных случаях возникновение погрешностей при вычислениях приводит к нарушению монотонности, что требует применения рестартов и ограничивает достижимое качество. В работе приводятся результаты экспериментов, подтверждающие эффективность построенного метода. Определяется, что новый подход превосходит подходы, основанные на использовании градиентных методов оптимизации: он позволяет достичь лучшего качества решения при значительно меньшем расходе вычислительных ресурсов. Предполагается, что построенный метод может быть обобщен и на другие задачи.
Ключевые слова: обратные задачи, выпуклая оптимизация, оптимизация в гильбертовом пространстве, методы первого порядка, покомпонентный спуск, неточный оракул.
On the modification of the method of component descent for solving some inverse problems of mathematical physics
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 301-316The article is devoted to solving ill-posed problems of mathematical physics for elliptic and parabolic equations, such as the Cauchy problem for the Helmholtz equation and the retrospective Cauchy problem for the heat equation with constant coefficients. These problems are reduced to problems of convex optimization in Hilbert space. The gradients of the corresponding functionals are calculated approximately by solving two well-posed problems. A new method is proposed for solving the optimization problems under study, it is component-by-component descent in the basis of eigenfunctions of a self-adjoint operator associated with the problem. If it was possible to calculate the gradient exactly, this method would give an arbitrarily exact solution of the problem, depending on the number of considered elements of the basis. In real cases, the inaccuracy of calculations leads to a violation of monotonicity, which requires the use of restarts and limits the achievable quality. The paper presents the results of experiments confirming the effectiveness of the constructed method. It is determined that the new approach is superior to approaches based on the use of gradient optimization methods: it allows to achieve better quality of solution with significantly less computational resources. It is assumed that the constructed method can be generalized to other problems.
-
Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.
Numerical simulation of air cooling the tank to desublimate components of the gas mixture
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529Views (last year): 3. Citations: 1 (RSCI).For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.
-
Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.
Layered Bénard–Marangoni convection during heat transfer according to the Newton’s law of cooling
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940Views (last year): 10. Citations: 3 (RSCI).The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"