All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Исследование порядка аппроксимации инвариантных дифференциальных операторов на нерегулярной четырехугольной сетке
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 353-364Проведен априорный анализ аппроксимации уравнений магнитной гидродинамики на нерегулярной четырехугольной сетке. Вычислены значения коэффициентов, определяющих норму невязки для разностных аналогов операторов градиента и дивергенции. Изучено влияние свойств ячеек сетки на невязку. Для численного подтверждения полученных оценок приведены примеры вычислений с заданием одинаковых начальных данных на разных сетках.
Investigation of approximation order of invariant differential operators on movable irregular quadrangular grid
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 353-364Views (last year): 2.The a priori analysis of approximation of magnetohydrodynamic equations on irregular quadrangular analysis was performed. The values of coefficients wich determine the misalignment norm for difference analogs of operators gradient and divergence were calculated. Was studied the influence of properties of grid cells on misalignment. For the numerical confirmation of obtained estimations were cited the examples of calculations with specifying identical initial data on different grids.
-
Алгоритм численного интегрирования потенциально-потоковых уравнений в сосредоточенных параметрах с контролем корректности приближенного решения
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 479-493Данная работа посвящена разработке алгоритма численного интегрирования системы дифференциальных уравнений потенциально-потокового метода моделирования неравновесных процессов. Этот метод был разработан автором в опубликованных им ранее работах. В настоящей работе рассмотрение ограничивается системами с сосредоточенными параметрами. Также ранее была разработана автором методика анализа корректности приближенного решения системы потенциально-потоковых уравнений для систем в сосредоточенных параметрах. Целью настоящей статьи является объединение этой методики с современными численными методами интегрирования систем обыкновенных дифференциальных уравнений и разработка методики численного интегрирования систем уравнений потенциально-потокового метода, позволяющей гарантировать корректность приближенного решения.
Ключевые слова: потенциально-потоковый метод, уравнения потенциально-потокового метода, численное интегрирование уравнений, анализ корректности приближенного решения.
Numerical integration algorithm potentially-streaming equations in lumped parameters to control the correctness of the approximate solution
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 479-493Views (last year): 4. Citations: 3 (RSCI).This work is devoted to development of an algorithm for numerical integration of differential equations potentially-streaming method simulation of non-equilibrium processes. This method was developed by the author in his earlier published works. In this paper, consideration is limited to systems with lumped parameters. Also previously developed method for analyzing the correctness of the author of the approximate solution of the system potentially-streaming equations for systems in lumped parameters. The purpose of this article is to combine this technique with modern numerical methods for integrating systems of ordinary differential equations and the development of methods of numerical integration of systems of equations potentially-streaming method that allows to guarantee the correctness of the approximate solution.
-
Классификация динамических режимов переключения намагниченности в трехслойной ферромагнитной структуре в зависимости от спин-поляризованного тока инжекции и внешнего магнитного поля. I. Продольная анизотропия
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 605-620В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.
Ключевые слова: память MRAM, одноосная анизотропия, намагниченность, свободный слой, закрепленный слой, уравнение Ландау–Лифшица–Гильберта, переключение намагниченности.
Classification of dynamical switching regimes in a three-layered ferromagnetic nanopillar governed by spin-polarized injection current and external magnetic field. I. Longitudinal anisotropy
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 605-620Views (last year): 2. Citations: 6 (RSCI).The mathematical model of the magnetic memory cell MRAM with the in-plane anisotropy axis parallel to the edge of a free ferromagnetic layer (longitudinal anisotropy) has been constructed using approximation of uniform magnetization. The model is based on the Landau–Lifshits–Gilbert equation with the injection-current term in the Sloncžewski–Berger form. The set of ordinary differential equations for magnetization dynamics in a three-layered Co/Cu/Cu valve under the control of external magnetic field and spin-polarized current has been derived in the normal coordinate form. It was shown that the set of equations has two main stationary points on the anisotropy axis at any values of field and current. The stationary analysis of them has been performed. The algebraic equations for determination of additional stationary points have been derived. It has been shown that, depending on the field and current magnitude, the set of equations can have altogether two, four, or six stationary points symmetric in pairs relatively the anisotropy axis. The bifurcation diagrams for all the points have been constructed. The classification of the corresponding phase portraits has been performed. The typical trajectories were calculated numerically using Runge–Kutta method. The regions, where stable and unstable limit cycles exist, have been determined. It was found that the unstable limit cycles exist around the main stable equilibrium point on the axis that coincides with the anisotropy one, whereas the stable cycles surround the unstable additional points of equilibrium. The area of their existence was determined numerically. The new types of dynamics, such as accidental switching and non-complete switching, have been found. The threshold values of switching current and field have been obtained analytically. The estimations of switching times have been performed numerically.
-
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 721-753В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.
Ключевые слова: WENO-схемы, нелинейные схемы, устойчивость численных схем, системы уравнений гиперболического типа, уравнение Хопфа.
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 721-753Views (last year): 9. Citations: 1 (RSCI).Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.
-
Современные методы математического моделирования кровотока c помощью осредненных моделей
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 581-604Изучение физиологических и патофизиологических процессов, связанных с системой кровообращения, является на сегодняшний день актуальной темой многих исследований. В данной работе рассматривается ряд подходов к математическому моделированию кровотока, основанных на пространственном осреднении и/или использующих стационарное приближение. Обсуждаются допущения и предположения, ограничивающие область применения моделей такого рода. Приводятся наиболее распространенные математические постановки задач и кратко описываются методы их численного решения. В первой части обсуждаются модели, основанные на полном пространственном осреднении и/или использующие стационарное приближение. Один из наиболее распространенных на сегодняшний день подходов состоит в проведении аналогий между течением вязкой несжимаемой жидкости в эластичных трубках и электрическим током в цепи. Такие модели используются не только сами по себе, но и как способ постановки граничных условий в моделях, учитывающих одномерную или трехмерную пространственную зависимость переменных. Динамические, полностью осредненные по пространству модели позволяют описывать динамику кровотока на достаточно больших временных интервалах, равных длительности десятков сердечных циклов и более. Далее рассмотрены стационарные модели основанные как на полностью осредненном, так и на двухмерном подходе. Такие модели могут быть использованы для моделирования кровотока в микроциркуляторном русле. Во второй части обсуждаются модели, основанные на одномерном осреднении параметров кровотока. Преимущество данного подхода также состоит в невысоких, по сравнению с трехмерным моделированием, требованиях к вычислительным ресурсам и возможности охвата всех достаточно крупных кровеносных сосудов в организме. Модели данного типа позволяют рассчитывать параметры кровотока в каждом сосуде сосудистой сети, включенной в модель. Структура и параметры такой сети могут быть заданы как на основе данных литературы, так и с помощью методов сегментации медицинских данных. Основными и весьма существенными предположениями при выводе одномерных уравнений из уравнений Навье – Стокса с помощью асимптотического анализа или их интегрирования по объему являются радиальная симметрия течения и постоянство формы профиля скорости в поперечном сечении. Существующие в настоящее время работы, посвященные валидации одномерных моделей, их сравнению между собой и с данными клинических исследований, позволяют говорить об успешности данного подхода и подтверждают возможность его использования в медицинской практике. Одномерные модели позволяют описывать такие динамические явления, как распространение пульсовой волны и звуки Короткова. В этом приближении могут быть учтены такие факторы, как действие на кровоток силы тяжести, действие на стенки сосудов силы сжатия мышц, регуляторные и ауторегуляторные эффекты.
Modern methods of mathematical modeling of blood flow using reduced order methods
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 581-604Views (last year): 62. Citations: 2 (RSCI).The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiac cycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models. Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network. The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier – Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model’s validation, to the comparing different 1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy. It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.
-
Свойство устойчивости статистического распределения Райса: теория и применение в задачах измерения фазового сдвига сигналов
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 475-485В работе рассматриваются особенности статистического распределения Райса, обусловливающие возможность его эффективного применения при решении задач высокоточных фазовых измерений в оптике. Дается строгое математическое доказательство свойства устойчивости статистического распределения Райса на примере рассмотрения разностного сигнала, а именно: доказано, что сумма или разность двух райсовских сигналов также подчиняются распределению Райса. Кроме того, получены формулы для параметров райсовского распределения результирующего суммарного или разностного сигнала. На основании доказанного свойства устойчивости распределения Райса в работе разработан новый оригинальный метод высокоточного измерения разности фаз двух квазигармонических сигналов. Этот метод базируется на статистическом анализе измеренных выборочных данных для обоих амплитуд сигналов и амплитуды третьего сигнала, представляющего собой разность сопоставляемых по фазе сигналов. Искомый фазовый сдвиг двух квазигармонических сигналов определяется исходя из геометрических соображений как угол треугольника, сформированного восстановленными на фоне шума значениями амплитуд трех упомянутых сигналов. Тем самым предлагаемый метод измерения фазового сдвига с использованием разностного сигнала основан исключительно на амплитудных измерениях, что существенно снижает требования к оборудованию и облегчает реализацию метода на практике. В работе представлены как строгое математическое обоснование нового метода измерения разности фаз сигналов, так и результаты его численного тестирования. Разработанный метод высокоточных фазовых измерений может эффективно применяться для решения широкого круга задач в различных областях науки и техники, в частности в дальнометрии, в системах коммуникации, навигации и т. п.
Ключевые слова: распределение Райса, плотность вероятности, свойство устойчивости, обработка стохастических данных, квазигармонический сигнал, фазовый сдвиг, фазовые измерения.
Stable character of the Rice statistical distribution: the theory and application in the tasks of the signals’ phase shift measuring
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 475-485The paper concerns the study of the Rice statistical distribution’s peculiarities which cause the possibility of its efficient application in solving the tasks of high precision phase measuring in optics. The strict mathematical proof of the Rician distribution’s stable character is provided in the example of the differential signal consideration, namely: it has been proved that the sum or the difference of two Rician signals also obey the Rice distribution. Besides, the formulas have been obtained for the parameters of the resulting summand or differential signal’s Rice distribution. Based upon the proved stable character of the Rice distribution a new original technique of the high precision measuring of the two quasi-harmonic signals’ phase shift has been elaborated in the paper. This technique is grounded in the statistical analysis of the measured sampled data for the amplitudes of the both signals and for the amplitude of the third signal which is equal to the difference of the two signals to be compared in phase. The sought-for phase shift of two quasi-harmonic signals is being calculated from the geometrical considerations as an angle of a triangle which sides are equal to the three indicated signals’ amplitude values having been reconstructed against the noise background. Thereby, the proposed technique of measuring the phase shift using the differential signal analysis, is based upon the amplitude measurements only, what significantly decreases the demands to the equipment and simplifies the technique implementation in practice. The paper provides both the strict mathematical substantiation of a new phase shift measuring technique and the results of its numerical testing. The elaborated method of high precision phase measurements may be efficiently applied for solving a wide circle of tasks in various areas of science and technology, in particular — at distance measuring, in communication systems, in navigation, etc.
-
Численное решение двумерного нелинейного уравнения теплопроводности с использованием радиальных базисных функций
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 9-22Работа посвящена численному решению задачи о движении тепловой волны для вырождающегося нелинейного уравнения второго порядка параболического типа с источником. Нелинейность уравнения обусловлена степенной зависимостью коэффициента теплопроводности от температуры. Рассматривается задача для случая двух пространственных переменных при краевом условии, задающем закон движения фронта тепловой волны. Предложен новый алгоритм решения на основе разложения по радиальным базисным функциям и метода граничных элементов. Решение строится по шагам по времени с разностной аппроксимацией по времени. На каждом шаге решается краевая задача для уравнения Пуассона, соответствующего исходному уравнению для фиксированного момента времени. Решение такой задачи строится итерационно в виде суммы частного решения, удовлетворяющего неоднородному уравнению, и решения соответствующего однородного уравнения, удовлетворяющего граничным условиям. Однородное уравнение решается методом граничных элементов, частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Алгоритм реализован в виде программы, написанной на языке программирования С++. Организация параллельных вычислений построена с использованием открытого стандарта OpenCL, что позволило запускать одну и ту же программу, выполняющую параллельные вычисления, как на центральных многоядерных процессорах, так и на графических процессорах. Для оценки эффективности предложенного метода решения и корректности разработанной вычислительной технологии были решены тестовые примеры. Результаты расчетов сравнивались как с известными точными решениями, так и с данными, полученными авторами ранее в других работах. Проведена оценка точности решений и времени проведения расчетов. Проведен анализ эффективности использования различных систем радиальных базисных функций для решения задач рассматриваемого типа. Определена наиболее подходящая система функций. Проведенный комплексный вычислительный эксперимент показал более высокую точность расчетов по предложенному новому алгоритму по сравнению с разработанным ранее.
Ключевые слова: нелинейное уравнение параболического типа с источником, уравнение теплопроводности, метод граничных элементов, радиальные базисные функции, метод двойственной взаимности, метод коллокаций.
Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 9-22The paper presents a numerical solution to the heat wave motion problem for a degenerate second-order nonlinear parabolic equation with a source term. The nonlinearity is conditioned by the power dependence of the heat conduction coefficient on temperature. The problem for the case of two spatial variables is considered with the boundary condition specifying the heat wave motion law. A new solution algorithm based on an expansion in radial basis functions and the boundary element method is proposed. The solution is constructed stepwise in time with finite difference time approximation. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is solved. The solution to this problem is constructed iteratively as the sum of a particular solution to the nonhomogeneous equation and a solution to the corresponding homogeneous equation satisfying the boundary conditions. The homogeneous equation is solved by the boundary element method. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The calculation algorithm is optimized by parallelizing the computations. The algorithm is implemented as a program written in the C++ language. The parallel computations are organized by using the OpenCL standard, and this allows one to run the same parallel code either on multi-core CPUs or on graphic CPUs. Test cases are solved to evaluate the effectiveness of the proposed solution method and the correctness of the developed computational technique. The calculation results are compared with known exact solutions, as well as with the results we obtained earlier. The accuracy of the solutions and the calculation time are estimated. The effectiveness of using various systems of radial basis functions to solve the problems under study is analyzed. The most suitable system of functions is selected. The implemented complex computational experiment shows higher calculation accuracy of the proposed new algorithm than that of the previously developed one.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"