Результаты поиска по 'Y-model':
Найдено статей: 757
  1. Bashkirtseva I.A., Perevalova T.V., Ryashko L.B.
    Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356

    This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.

  2. Samoylenko I.A., Kuleshov I.V., Raigorodsky A.M.
    The model of two-level intergroup competition
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 355-368

    At the middle of the 2000-th, scientists studying the functioning of insect communities identified four basic patterns of the organizational structure of such communities. (i) Cooperation is more developed in groups with strong kinship. (ii) Cooperation in species with large colony sizes is often more developed than in species with small colony sizes. And small-sized colonies often exhibit greater internal reproductive conflict and less morphological and behavioral specialization. (iii) Within a single species, brood size (i. e., in a sense, efficiency) per capita usually decreases as colony size increases. (iv) Advanced cooperation tends to occur when resources are limited and intergroup competition is fierce. Thinking of the functioning of a group of organisms as a two-level competitive market in which individuals face the problem of allocating their energy between investment in intergroup competition and investment in intragroup competition, i. e., an internal struggle for the share of resources obtained through intergroup competition, we can compare such a biological situation with the economic phenomenon of “coopetition” — the cooperation of competing agents with the goal of later competitively dividing the resources won in consequence In the framework of economic researches the effects similar to (ii) — in the framework of large and small group competition the optimal strategy of large group would be complete squeezing out of the second group and monopolization of the market (i. e. large groups tend to act cooperatively) and (iii) — there are conditions, in which the size of the group has a negative impact on productivity of each of its individuals (this effect is called the paradox of group size or Ringelman effect). The general idea of modeling such effects is the idea of proportionality — each individual (an individual/rational agent) decides what share of his forces to invest in intergroup competition and what share to invest in intragroup competition. The group’s gain must be proportional to its total investment in competition, while the individual’s gain is proportional to its contribution to intra-group competition. Despite the prevalence of empirical observations, no gametheoretic model has yet been introduced in which the empirically observed effects can be confirmed. This paper proposes a model that eliminates the problems of previously existing ones and the simulation of Nash equilibrium states within the proposed model allows the above effects to be observed in numerical experiments.

  3. The main aim, formulated in the first part of article, is to carry out detailed numerical studies of the chemical, ionization, optical, and temperature characteristics of the lower ionosphere perturbed by powerful radio emission. The brief review of the main experimental and theoretical researches of physical phenomena occurring in the ionosphere when it is heated by high-power high-frequency radio waves from heating facilities is given. The decisive role of the $D$-region of the ionosphere in the absorption of radio beam energy is shown. A detailed analysis of kinetic processes in the disturbed $D$-region, which is the most complex in kinetic terms, has been performed. It is shown that for a complete description of the ionization-chemical and optical characteristics of the disturbed region, it is necessary to take into account more than 70 components, which, according to their main physical content, can be conveniently divided into five groups. A kinetic model is presented to describe changes in the concentrations of components interacting (the total number of reactions is 259). The system of kinetic equations was solved using a semi-implicit numerical method specially adapted to such problems. Based on the proposed structure, a software package was developed in which the algorithm scheme allowed changing both the content of individual program blocks and their number, which made it possible to conduct detailed numerical studies of individual processes in the behavior of the parameters of the perturbed region. The complete numerical algorithm is based on the two-temperature approximation, in which the main attention was paid to the calculation of the electron temperature, since its behavior is determined by inelastic kinetic processes involving electrons. The formulation of the problem is of a rather general nature and makes it possible to calculate the parameters of the disturbed ionosphere in a wide range of powers and frequencies of radio emission. Based on the developed numerical technique, it is possible to study a wide range of phenomena both in the natural and disturbed ionosphere.

  4. Aksenov A.A., Zhluktov S.V., Kashirin V.S., Sazonova M.L., Cherny S.G., Drozdova E.A., Rode A.A.
    Numerical modeling of raw atomization and vaporization by flow of heat carrier gas in furnace technical carbon production into FlowVision
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 921-939

    Technical carbon (soot) is a product obtained by thermal decomposition (pyrolysis) of hydrocarbons (usually oil) in a stream of heat carrier gas. Technical carbon is widely used as a reinforcing component in the production of rubber and plastic masses. Tire production uses 70% of all carbon produced. In furnace carbon production, the liquid hydrocarbon feedstock is injected into the natural gas combustion product stream through nozzles. The raw material is atomized and vaporized with further pyrolysis. It is important for the raw material to be completely evaporated before the pyrolysis process starts, otherwise coke, that contaminates the product, will be produced. It is impossible to operate without mathematical modeling of the process itself in order to improve the carbon production technology, in particular, to provide the complete evaporation of the raw material prior to the pyrolysis process. Mathematical modelling is the most important way to obtain the most complete and detailed information about the peculiarities of reactor operation.

    A three-dimensional mathematical model and calculation method for raw material atomization and evaporation in the thermal gas flow are being developed in the FlowVision software package PC. Water is selected as a raw material to work out the modeling technique. The working substances in the reactor chamber are the combustion products of natural gas. The motion of raw material droplets and evaporation in the gas stream are modeled in the framework of the Eulerian approach of interaction between dispersed and continuous media. The simulation results of raw materials atomization and evaporation in a real reactor for technical carbon production are presented. Numerical method allows to determine an important atomization characteristic: average Sauter diameter. That parameter could be defined from distribution of droplets of raw material at each time of spray forming.

  5. Lopato A.I., Poroshyna Y.E., Utkin P.S.
    Numerical study of the mechanisms of propagation of pulsating gaseous detonation in a non-uniform medium
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1263-1282

    In the last few years, significant progress has been observed in the field of rotating detonation engines for aircrafts. Scientific laboratories around the world conduct both fundamental researches related, for example, to the issues of effective mixing of fuel and oxidizer with the separate supply, and applied development of existing prototypes. The paper provides a brief overview of the main results of the most significant recent computational work on the study of propagation of a onedimensional pulsating gaseous detonation wave in a non-uniform medium. The general trends observed by the authors of these works are noted. In these works, it is shown that the presence of parameter perturbations in front of the wave front can lead to regularization and to resonant amplification of pulsations behind the detonation wave front. Thus, there is an appealing opportunity from a practical point of view to influence the stability of the detonation wave and control it. The aim of the present work is to create an instrument to study the gas-dynamic mechanisms of these effects.

    The mathematical model is based on one-dimensional Euler equations supplemented by a one-stage model of the kinetics of chemical reactions. The defining system of equations is written in the shock-attached frame that leads to the need to add a shock-change equations. A method for integrating this equation is proposed, taking into account the change in the density of the medium in front of the wave front. So, the numerical algorithm for the simulation of detonation wave propagation in a non-uniform medium is proposed.

    Using the developed algorithm, a numerical study of the propagation of stable detonation in a medium with variable density as carried out. A mode with a relatively small oscillation amplitude is investigated, in which the fluctuations of the parameters behind the detonation wave front occur with the frequency of fluctuations in the density of the medium. It is shown the relationship of the oscillation period with the passage time of the characteristics C+ and C0 over the region, which can be conditionally considered an induction zone. The phase shift between the oscillations of the velocity of the detonation wave and the density of the gas before the wave is estimated as the maximum time of passage of the characteristic C+ through the induction zone.

  6. Skvortsova V.A., Abdullin R.R., Stepanova A.A.
    Optimisation of parameters and structure of a parallel spherical manipulator
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1523-1534

    The paper is a study of the mathematical model and kinematics of a parallel spherical manipulator. This type of manipulator was proposed back in the 80s of the last century and has since found application in exoskeletons and rehabilitation robots due to its structure, which allows imitating natural joint movements of the human body.

    The Parallel Spherical Manipulator is a robot with three legs and two platforms, a base platform and a mobile platform. Its legs consist of two support links that are arc-shaped. Mathematically, the manipulator can be described using two virtual pyramids that are placed on top of each other.

    The paper considers two types of manipulator configurations: classical and asymmetric, and solves basic kinematic problems for each. The study shows that the asymmetric design of the manipulator has the maximum workspace, especially when the motors are mounted at the joints of the manipulator’s links inside legs.

    To optimize the parameters of the parallel spherical manipulator, we introduced a metric of usable workspace volume. This metric represents the volume of the sector of the sphere in which the robot does not experience internal collisions or singular states. There are three types of singular states possible within a parallel spherical manipulator — serial, parallel, and mixed singularity. We used all three types of singularities to calculate the useful volume. In our research work, we solved the problem related to maximizing the usable volume of the workspace.

    Through our research work, we found that the asymmetric configuration of the spherical manipulator maximizes the workspace when the motors are located at the articulation point of the robot leg support arms. At the same time, the parameter $\beta_1$ must be zero degrees to maximize the workspace. This allowed us to create a prototype robot in which we eliminated the use of lower links in legs in favor of a radiused rail along which the motors run. This allowed us to reduce the linear dimensions of the robot itself and gain on the stiffness of the structure.

    The results obtained can be used to optimize the parameters of the parallel spherical manipulator in various industrial and scientific applications, as well as for further research of other types of parallel robots and manipulators.

  7. Malikov Z.M., Nazarov F.K., Madaliev M.E.
    Numerical study of Taylor – Cuetta turbulent flow
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 395-408

    In this paper, the turbulent Taylor – Couette flow is investigated using two-dimensional modeling based on the averaged Navier – Stokes (RANS) equations and a new two-fluid approach to turbulence at Reynolds numbers in the range from 1000 to 8000. The flow due to a rotating internal and stationary external cylinders. The case of ratio of cylinder diameters 1:2 is considered. It is known that the emerging circular flow is characterized by anisotropic turbulence and mathematical modeling of such flows is a difficult task. To describe such flows, either direct modeling methods are used, which require large computational costs, or rather laborious Reynolds stress methods, or linear RANS models with special corrections for rotation, which are able to describe anisotropic turbulence. In order to compare different approaches to turbulence modeling, the paper presents the numerical results of linear RANS models SARC, SST-RC, Reynolds stress method SSG/LRR-RSM-w2012, DNS direct turbulence modeling, as well as a new two-fluid model. It is shown that the recently developed twofluid model adequately describes the considered flow. In addition, the two-fluid model is easy to implement numerically and has good convergence.

  8. Suganya G., Jenitta E., Senthamarai R.
    A study on the dynamics of pest population with biocontrol using predator, parasite in presence of awareness
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 713-729

    The coconut tree is often mentioned as the “tree of life” due to its immense benefits to the human community ranging from edible products to building materials. Rugose spiraling whitefly (RSW), a natural enemy seems to be a major threat to farmers in bringing up these coconut trees. A mathematical model to study the dynamics of pest population in the presence of predator and parasite is developed. The biologically feasible equilibrium points are derived. Local asymptotic stability as well as global asymptotic stability is analyzed at the points. Furthermore, in order to educate farmers on pest control, we have added the impact of awareness programs in the model. The conditions of existence and stability properties of all feasible steady states of this model are analyzed. The result reveals that predator and parasite play a major role in reducing the immature pest. It also shows that pest control activities through awareness programs further reduce the mature pest population which decreases the egg laying rate which in turn reduces the immature population.

  9. Yakushevich L.V., Savin A.V., Manevitch L.I.
    Nonlinear waves in the DNA molecules containing a boundary between two homogeneous regions
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 209-215

    Propagation of nonlinear conformational waves through the boundary dividing the double polynucleotide chain into two different homogeneous regions is investigated. Calculations are made in the frameworks of the DNA model which takes into account the difference in mass of nitrous bases and the difference in distances between sugar-phosphate chain and the centers of mass of bases which are connected with the chain by β-glycoside bond С1-N. We consider different possible combinations of homogeneous regions placed on the right and on the left from the boundary, and we calculate the changes of the nonlinear wave velocity (v) and size (d) of the nonlinear waves due to overcoming the boundary.

    Views (last year): 4. Citations: 1 (RSCI).
  10. Abaturova A.M., Kovalenko I.B., Riznichenko G.Yu., Rubin A.B.
    Investigation of complex formation of flavodoxin and photosystem 1 by means of direct multiparticle computer simulation
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 85-91

    Kinetics of complex formation between components of the photosynthetic electron transport chain — flavodoxin and membrane complex photosystem I has been studied using computer model based on methods of multiparticle simulation and Brownian dynamics. We simulated Brownian motion of several hundreds of flavodoxin molecules, taking into account electrostatic interactions and complex shape of the molecules. Our model could describe experimental nonmonotonic dependence of the association rate constant for flavodoxin and photosystem I. This lets us conclude that electrostatic interactions are sufficient to form such kind of nonmonotonic dependence.

    Views (last year): 4. Citations: 2 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"