All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Correlation and realization of quasi-Newton methods of absolute optimization
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 55-78Views (last year): 7. Citations: 5 (RSCI).Newton and quasi-Newton methods of absolute optimization based on Cholesky factorization with adaptive step and finite difference approximation of the first and the second derivatives. In order to raise effectiveness of the quasi-Newton methods a modified version of Cholesky decomposition of quasi-Newton matrix is suggested. It solves the problem of step scaling while descending, allows approximation by non-quadratic functions, and integration with confidential neighborhood method. An approach to raise Newton methods effectiveness with finite difference approximation of the first and second derivatives is offered. The results of numerical research of algorithm effectiveness are shown.
-
Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 485-500Stability of finite difference schemes of lattice Boltzmann method for modelling of 1D diffusion for cases of D1Q2 and D1Q3 lattices is investigated. Finite difference schemes are constructed for the system of linear Bhatnagar–Gross–Krook (BGK) kinetic equations on single particle distribution functions. Brief review of articles of other authors is realized. With application of multiscale expansion by Chapman–Enskog method it is demonstrated that system of BGK kinetic equations at small Knudsen number is transformated to scalar linear diffusion equation. The solution of linear diffusion equation is obtained as a sum of single particle distribution functions. The method of linear travelling wave propagation is used to show the unconditional asymptotic stability of the solution of Cauchy problem for the system of BGK equations at all values of relaxation time. Stability of the scheme for D1Q2 lattice is demonstrated by the method of differential approximation. Stability condition is written in form of the inequality on values of relaxation time. The possibility of the reduction of stability analysis of the schemes for BGK equations to the analysis of special schemes for diffusion equation for the case of D1Q3 lattice is investigated. Numerical stability investigation is realized by von Neumann method. Absolute values of the eigenvalues of the transition matrix are investigated in parameter space of the schemes. It is demonstrated that in wide range of the parameters changing the values of modulas of eigenvalues are lower than unity, so the scheme is stable with respect to initial conditions.
Keywords: lattice Boltzmann method, stability.Views (last year): 2. Citations: 1 (RSCI). -
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 2. Numerical examples
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 885-910Views (last year): 13.WENO schemes (weighted, essentially non oscillating) are currently having a wide range of applications as approximate high order schemes for discontinuous solutions of partial differential equations. These schemes are used for direct numerical simulation (DNS) and large eddy simmulation in the gas dynamic problems, problems for DNS in MHD and even neutron kinetics. This work is dedicated to clarify some characteristics of WENO schemes and numerical simulation of specific tasks. Results of the simulations can be used to clarify the field of application of these schemes. The first part of the work contained proofs of the approximation properties, stability and convergence of WENO5, WENO7, WENO9, WENO11 and WENO13 schemes. In the second part of the work the modified wave number analysis is conducted that allows to conclude the dispersion and dissipative properties of schemes. Further, a numerical simulation of a number of specific problems for hyperbolic equations is conducted, namely for advection equations (one-dimensional and two-dimensional), Hopf equation, Burgers equation (with low dissipation) and equations of non viscous gas dynamics (onedimensional and two-dimensional). For each problem that is implying a smooth solution, the practical calculation of the order of approximation via Runge method is performed. The influence of a time step on nonlinear properties of the schemes is analyzed experimentally in all problems and cross checked with the first part of the paper. In particular, the advection equations of a discontinuous function and Hopf equations show that the failure of the recommendations from the first part of the paper leads first to an increase in total variation of the solution and then the approximation is decreased by the non-linear dissipative mechanics of the schemes. Dissipation of randomly distributed initial conditions in a periodic domain for one-dimensional Burgers equation is conducted and a comparison with the spectral method is performed. It is concluded that the WENO7–WENO13 schemes are suitable for direct numerical simulation of turbulence. At the end we demonstrate the possibility of the schemes to be used in solution of initial-boundary value problems for equations of non viscous gas dynamics: Rayleigh–Taylor instability and the reflection of the shock wave from a wedge with the formation a complex configuration of shock waves and discontinuities.
-
Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607Views (last year): 7.We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.
We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.
In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.
Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.
Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.
-
Signal and noise parameters’ determination at rician data analysis by method of moments of lower odd orders
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 717-728Views (last year): 10. Citations: 1 (RSCI).The paper develops a new mathematical method of the joint signal and noise parameters determination at the Rice statistical distribution by method of moments based upon the analysis of data for the 1-st and the 3-rd raw moments of the random rician value. The explicit equations’ system have been obtained for required parameters of the signal and noise. In the limiting case of the small value of the signal-to-noise ratio the analytical formulas have been derived that allow calculating the required parameters without the necessity of solving the equations numerically. The technique having been elaborated in the paper ensures an efficient separation of the informative and noise components of the data to be analyzed without any a-priori restrictions, just based upon the processing of the results of the signal’s sampled measurements. The task is meaningful for the purposes of the rician data processing, in particular in the systems of magnetic-resonance visualization, in ultrasound visualization systems, at the optical signals’ analysis in range measuring systems, in radio location, etc. The results of the investigation have shown that the two parameter task solution of the proposed technique does not lead to the increase in demanded volume of computing resources compared with the one parameter task being solved in approximation that the second parameter of the task is known a-priori There are provided the results of the elaborated technique’s computer simulation. The results of the signal and noise parameters’ numerical calculation have confirmed the efficiency of the elaborated technique. There has been conducted the comparison of the accuracy of the sought-for parameters estimation by the technique having been developed in this paper and by the previously elaborated method of moments based upon processing the measured data for lower even moments of the signal to be analyzed.
-
Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643Views (last year): 27.The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.
-
Numerical calculation of planar geophysical flows of an inviscid incompressible fluid by a meshfree-spectral method
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 413-426Views (last year): 16.In this article, a meshfree-spectral method for numerical investigation of dynamics of planar geophysical flows is proposed. We investigate inviscid incompressible fluid flows with the presence of planetary rotation. Mathematically this problem is described by the non-steady system of two partial differential equations in terms of stream and vorticity functions with different boundary conditions (closed flow region and periodic conditions). The proposed method is based on several assumptions. First of all, the vorticity field is given by its values on the set of particles. The function of vorticity distribution is approximated by piecewise cubic polynomials. Coefficients of polynomials are found by least squares method. The stream function is calculated by using the spectral global Bubnov –Galerkin method at each time step.
The dynamics of fluid particles is calculated by pseudo-symplectic Runge –Kutta method. A detailed version of the method for periodic boundary conditions is described in this article for the first time. The adequacy of numerical scheme was examined on test examples. The dynamics of the configuration of four identical circular vortex patches with constant vorticity located at the vertices of a square with a center at the pole is investigated by numerical experiments. The effect of planetary rotation and the radius of patches on the dynamics and formation of vortex structures is studied. It is shown that, depending on the direction of rotation, the Coriolis force can enhance or slow down the processes of interaction and mixing of the distributed vortices. At large radii the vortex structure does not stabilize.
-
Modeling the physical processes of a powerful nuclear explosion on an asteroid
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 861-877As part of the paper, a physical and theoretical analysis of the impact processes of various factors of a highaltitude and high-energy nuclear explosion on the asteroid in extra-atmospheric conditions of open space is done. It is shown that, in accordance with the energy and permeability of the plasma of explosion products, X-ray and gamma-neutron radiation, a layered structure with a different energy density depending on angular coordinates is formed on the surface of the asteroid. The temporal patterns of the energy transformation for each layer is clarified and the roles of various photo- and collision processes are determined. The effect of a high-speed plasma flow is erosive in nature, and the plasma pulse is transmitted to the asteroid. The paper presents that in a thin layer of x-ray absorption, the asteroid substance is heated to high temperatures and as a result of its expansion, a recoil impulse is formed, which is not decisive due to the small mass of the expanding high-temperature plasma. Calculations shows that the main impulse received by an asteroid is associated with the entrainment of a heated layer of a substance formed by a neutron flux (7.5 E 1014 g E cm/s). It is shown that an asteroid with a radius of ~100 m acquires a velocity of . 100 cm/s. The calculations were performed taking into account the explosion energy spent on the destruction of the amorphous structure of the asteroid material (~1 eV/atom = 3.8 E 1010 erg/g) and ionization in the region of the high-temperature layer. Based on a similar analysis, an approximation is obtained for estimating the average size of fragments in the event of the possible destruction of the asteroid by shock waves generated inside it under the influence of pressure impulses. A physical experiment was conducted in laboratory conditions, simulating the fragmentation of a stone asteroid and confirming the validity of the obtained dependence on the selected values of certain parameters. As a result of numerical studies of the effects of the explosion, carried out at different distances from the surface of the asteroid, it is shown that taking into account the real geometry of the spallation layer gives the optimal height for the formation of the maximum asteroid momentum by a factor of 1.5 greater than similar estimates according to the simplified model. A two-stage concept of the impact of nuclear explosions on an asteroid using radar guidance tools is proposed. The paper analyzes the possible impact of the emerging ionization interference on the radar tracking of the movement of large fragments of the asteroid in the space-time evolution of all elements of the studied dynamic system.
-
A method of constructing a predictive neural network model of a time series
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 737-756This article studies a method of constructing a predictive neural network model of a time series based on determining the composition of input variables, constructing a training sample and training itself using the back propagation method. Traditional methods of constructing predictive models of the time series are: the autoregressive model, the moving average model or the autoregressive model — the moving average allows us to approximate the time series by a linear dependence of the current value of the output variable on a number of its previous values. Such a limitation as linearity of dependence leads to significant errors in forecasting.
Mining Technologies using neural network modeling make it possible to approximate the time series by a nonlinear dependence. Moreover, the process of constructing of a neural network model (determining the composition of input variables, the number of layers and the number of neurons in the layers, choosing the activation functions of neurons, determining the optimal values of the neuron link weights) allows us to obtain a predictive model in the form of an analytical nonlinear dependence.
The determination of the composition of input variables of neural network models is one of the key points in the construction of neural network models in various application areas that affect its adequacy. The composition of the input variables is traditionally selected from some physical considerations or by the selection method. In this work it is proposed to use the behavior of the autocorrelation and private autocorrelation functions for the task of determining the composition of the input variables of the predictive neural network model of the time series.
In this work is proposed a method for determining the composition of input variables of neural network models for stationary and non-stationary time series, based on the construction and analysis of autocorrelation functions. Based on the proposed method in the Python programming environment are developed an algorithm and a program, determining the composition of the input variables of the predictive neural network model — the perceptron, as well as building the model itself. The proposed method was experimentally tested using the example of constructing a predictive neural network model of a time series that reflects energy consumption in different regions of the United States, openly published by PJM Interconnection LLC (PJM) — a regional network organization in the United States. This time series is non-stationary and is characterized by the presence of both a trend and seasonality. Prediction of the next values of the time series based on previous values and the constructed neural network model showed high approximation accuracy, which proves the effectiveness of the proposed method.
-
Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.
Keywords: discrete maps, integral transforms, solitons, vortices, switching waves, vortex lattices, chaos, turbulence.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"