Результаты поиска по 'associativity':
Найдено авторов: 1
  1. Associate Profeesor M.A. (Abdelhakem M.A.)
Найдено статей: 68
  1. Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Experimental identification of the organization of mental calculations of the person on the basis of algebras of different associativity
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 311-327

    The work continues research on the ability of a person to improve the productivity of information processing, using parallel work or improving the performance of analyzers. A person receives a series of tasks, the solution of which requires the processing of a certain amount of information. The time and the validity of the decision are recorded. The dependence of the average solution time on the amount of information in the problem is determined by correctly solved problems. In accordance with the proposed method, the problems contain calculations of expressions in two algebras, one of which is associative and the other is nonassociative. To facilitate the work of the subjects in the experiment were used figurative graphic images of elements of algebra. Non-associative calculations were implemented in the form of the game “rock-paper-scissors”. It was necessary to determine the winning symbol in the long line of these figures, considering that they appear sequentially from left to right and play with the previous winner symbol. Associative calculations were based on the recognition of drawings from a finite set of simple images. It was necessary to determine which figure from this set in the line is not enough, or to state that all the pictures are present. In each problem there was no more than one picture. Computation in associative algebra allows the parallel counting, and in the absence of associativity only sequential computations are possible. Therefore, the analysis of the time for solving a series of problems reveals a consistent uniform, sequential accelerated and parallel computing strategy. In the experiments it was found that all subjects used a uniform sequential strategy to solve non-associative problems. For the associative task, all subjects used parallel computing, and some have used parallel computing acceleration of the growth of complexity of the task. A small part of the subjects with a high complexity, judging by the evolution of the solution time, supplemented the parallel account with a sequential stage of calculations (possibly to control the solution). We develop a special method for assessing the rate of processing of input information by a person. It allowed us to estimate the level of parallelism of the calculation in the associative task. Parallelism of level from two to three was registered. The characteristic speed of information processing in the sequential case (about one and a half characters per second) is twice less than the typical speed of human image recognition. Apparently the difference in processing time actually spent on the calculation process. For an associative problem in the case of a minimum amount of information, the solution time is near to the non-associativity case or less than twice. This is probably due to the fact that for a small number of characters recognition almost exhausts the calculations for the used non-associative problem.

    Views (last year): 16.
  2. Katasev A.S.
    Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492

    This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.

    Views (last year): 12.
  3. Abaturova A.M., Kovalenko I.B., Riznichenko G.Yu., Rubin A.B.
    Investigation of complex formation of flavodoxin and photosystem 1 by means of direct multiparticle computer simulation
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 85-91

    Kinetics of complex formation between components of the photosynthetic electron transport chain — flavodoxin and membrane complex photosystem I has been studied using computer model based on methods of multiparticle simulation and Brownian dynamics. We simulated Brownian motion of several hundreds of flavodoxin molecules, taking into account electrostatic interactions and complex shape of the molecules. Our model could describe experimental nonmonotonic dependence of the association rate constant for flavodoxin and photosystem I. This lets us conclude that electrostatic interactions are sufficient to form such kind of nonmonotonic dependence.

    Views (last year): 4. Citations: 2 (RSCI).
  4. Terekhin A.T., Budilova E.V., Karpenko M.P., Kachalova L.M., Chmyhova E.V.
    Lyapunov function as a tool for the study of cognitive and regulatory processes in organism
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 449-456

    Cognitive and regulatory processes in organism are ensured by the functioning of several different network systems — neural, endocrine, immune, and gene ones. These systems are, however, closely related and form a single integrated neurogenohumoral cognitive-regulatory dynamic system of organism. A review of publications is given which shows that it is possible to associate with this dynamic system a corresponding Lyapunov function (energy function, potential function) and that analyzing this function allows, due to its geometrical insight, to easily discover a set of general properties of cognitive and regulatory functioning of organism.

    Views (last year): 4. Citations: 5 (RSCI).
  5. Slovokhotov Y.L.
    Phase transitions associated with economy and demography
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 209-218

    Crises in social systems are considered by analogy with phase transitions and the corresponding critical phenomena in «non-living» many-particle physical systems. We present two qualitative physical models: (i) a historical and demographic progress as a gradual condensation of economical domains with an improvement of living conditions, and (ii) the modern economical crisis as a result of a spontaneous «condensation» of assets in a free expansion of the U.S. economy in 1990th and 2000th, reducing a control over large business enterprises formed in this process. The first model explains the observed hyperbolic growth of world population in the I–XX centuries A.D. without any additional assumption while the second model points to the analogy between the economic expansion with a drop of competition, and the expansion of gas into vacuum with a drop of temperature.

    Views (last year): 9. Citations: 9 (RSCI).
  6. Ashryatov A.A., Prytkov S.V., Syromyasov A.O.
    Calculation of spatial distribution of differently oriented LEDs
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 577-584

    New method for calculation of spatial light distribution of differently oriented LEDs is proposed. The main idea is combination of coordinate systems associated with these light sources. Unlike other conventional approaches, this method can be applied to the emitters with light distribution with arbitrary symmetry or without symmetry at all.

    Views (last year): 3. Citations: 2 (RSCI).
  7. Kirilyuk I.L., Volynsky A.I., Kruglova M.S., Kuznetsova A.V., Rubinstein A.A., Sen'ko O.V.
    Empirical testing of institutional matrices theory by data mining
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 923-939

    The paper has a goal to identify a set of parameters of the environment and infrastructure with the most significant impact on institutional-matrices that dominate in different countries. Parameters of environmental conditions includes raw statistical indices, which were directly derived from the databases of open access, as well as complex integral indicators that were by method of principal components. Efficiency of discussed parameters in task of dominant institutional matrices type recognition (X or Y type) was evaluated by a number of methods based on machine learning. It was revealed that greatest informational content is associated with parameters characterizing risk of natural disasters, level of urbanization and the development of transport infrastructure, the monthly averages and seasonal variations of temperature and precipitation.

    Views (last year): 7. Citations: 13 (RSCI).
  8. Yakushevich L.V.
    Electronic analogue of DNA
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 789-798

    It is known that the internal mobility of DNA molecules plays an important role in the functioning of these molecules. This explains the great interest of researchers in studying the internal dynamics of DNA. Complexity, laboriousness and high cost of research in this field stimulate the search and creation of simpler physical analogues, convenient for simulating the various dynamic regimes possible in DNA. One of the directions of such a search is connected with the use of a mechanical analogue of DNA — a chain of coupled pendulums. In this model, pendulums imitate nitrous bases, horizontal thread on which pendulums are suspended, simulates a sugarphosphate chain, and gravitational field simulates a field induced by a second strand of DNA. Simplicity and visibility are the main advantages of the mechanical analogue. However, the model becomes too cumbersome in cases where it is necessary to simulate long (more than a thousand base pairs) DNA sequences. Another direction is associated with the use of an electronic analogue of the DNA molecule, which has no shortcomings of the mechanical model. In this paper, we investigate the possibility of using the Josephson line as an electronic analogue. We calculated the coefficients of the direct and indirect transformations for the simple case of a homogeneous, synthetic DNA, the sequence of which contains only adenines. The internal mobility of the DNA molecule was modeled by the sine-Gordon equation for angular vibrations of nitrous bases belonging to one of the two polynucleotide chains of DNA. The second polynucleotide chain was modeled as a certain average field in which these oscillations occur. We obtained the transformation, allowing the transition from DNA to an electronic analog in two ways. The first includes two stages: (1) the transition from DNA to the mechanical analogue (a chain of coupled pendulums) and (2) the transition from the mechanical analogue to the electronic one (the Josephson line). The second way is direct. It includes only one stage — a direct transition from DNA to the electronic analogue.

    Views (last year): 9.
  9. Il’ichev V.G., Kulygin V.V., Dashkevich L.V.
    On possible changes in phytocenoses of the Sea of Azov under climate warming
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 981-991

    Base long-term modern scenarios of hydrochemical and temperature regimes of the Sea of Azov were considered. New schemes of modeling mechanisms of algal adaptation to changes in the hydrochemical regime and temperature were proposed. In comparison to the traditional ecological-evolutionary schemes, these models have a relatively small dimension, high speed and allow carrying out various calculations on long-term perspective (evolutionally significant times). Based on the ecology-evolutionary model of the lower trophic levels the impact of these environmental factors on the dynamics and microevolution of algae in the Sea of Azov was estimated. In each scenario, the calculations were made for 100 years, with the final values of the variables and parameters not depending on the choice of the initial values. In the process of such asymptotic computer analysis, it was found that as a result of climate warming and temperature adaptation of organisms, the average annual biomass of thermophilic algae (Pyrrophyta and Cyanophyta) naturally increases. However, for a number of diatom algae (Bacillariophyta), even with their temperature adaptation, the average annual biomass may unexpectedly decrease. Probably, this phenomenon is associated with a toughening of competition between species with close temperature parameters of existence. The influence of the variation in the chemical composition of the Don River’s flow on the dynamics of nutrients and algae of the Sea of Azov was also investigated. It turned out that the ratio of organic forms of nitrogen and phosphorus in sea waters varies little. This stabilization phenomenon will take place for all high-productive reservoirs with low flow, due to autochthonous origin of larger part of organic matter in water bodies of this type.

    Views (last year): 11.
  10. Malkov S.Yu.
    Regimes with exacerbation in the history of mankind or memories of the future
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947

    The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"