Результаты поиска по 'complexity':
Найдено статей: 235
  1. Grachev V.A., Nayshtut Yu.S.
    Buckling prediction for shallow convex shells based on the analysis of nonlinear oscillations
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1189-1205

    Buckling problems of thin elastic shells have become relevant again because of the discrepancies between the standards in many countries on how to estimate loads causing buckling of shallow shells and the results of the experiments on thinwalled aviation structures made of high-strength alloys. The main contradiction is as follows: the ultimate internal stresses at shell buckling (collapsing) turn out to be lower than the ones predicted by the adopted design theory used in the USA and European standards. The current regulations are based on the static theory of shallow shells that was put forward in the 1930s: within the nonlinear theory of elasticity for thin-walled structures there are stable solutions that significantly differ from the forms of equilibrium typical to small initial loads. The minimum load (the lowest critical load) when there is an alternative form of equilibrium was used as a maximum permissible one. In the 1970s it was recognized that this approach is unacceptable for complex loadings. Such cases were not practically relevant in the past while now they occur with thinner structures used under complex conditions. Therefore, the initial theory on bearing capacity assessments needs to be revised. The recent mathematical results that proved asymptotic proximity of the estimates based on two analyses (the three-dimensional dynamic theory of elasticity and the dynamic theory of shallow convex shells) could be used as a theory basis. This paper starts with the setting of the dynamic theory of shallow shells that comes down to one resolving integrodifferential equation (once the special Green function is constructed). It is shown that the obtained nonlinear equation allows for separation of variables and has numerous time-period solutions that meet the Duffing equation with “a soft spring”. This equation has been thoroughly studied; its numerical analysis enables finding an amplitude and an oscillation period depending on the properties of the Green function. If the shell is oscillated with the trial time-harmonic load, the movement of the surface points could be measured at the maximum amplitude. The study proposes an experimental set-up where resonance oscillations are generated with the trial load normal to the surface. The experimental measurements of the shell movements, the amplitude and the oscillation period make it possible to estimate the safety factor of the structure bearing capacity with non-destructive methods under operating conditions.

  2. Elizarova T.G., Zherikov A.V., Kalachinskaya I.S.
    Numerical solution of quasi-hydrodynamic equations on non-structured triangle mesh
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 181-188

    A new flow modeling method on unstructured grid was proposed. As a basis system this method used quasi-hydro-dynamic equations. The finite volume method vas used for solving these equations. The Delaunay triangulation was used for constructing mesh. This proposed method was tested in modeling of incompressible flow through a channel with complex profile. The acquired results showed that the proposed method could be used in flow modeling in unstructured grid.

    Views (last year): 1.
  3. Kolmakova T.V.
    Method of modelling of compact bone tissue structure
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 413-420

    The method of modelling of a compact bone tissue microstructure is presented. The modelling sample is considered as set of the structural elements containing reinforcing element – osteon and a matrix. The form of structural elements is defined by distances to next osteons and directions of next osteons arrangement. Calculation of the stress and strain state of the modelling sample is carried out at tension in program complex ANSYS. Results of calculation have shown, that haversian canals are stress concentrators.

    Views (last year): 2. Citations: 7 (RSCI).
  4. Maryakhina V.S., Gunkov V.V.
    Fluorescent probe immobilization into enzyme molecules
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 835-843

    The results of the experimental and theoretical researches of kinetics of erythrosine penetration into collagenase molecules have represented in this paper. The case with introduction of the compound (fluorescent probe) which has dimers to enzyme solution as an injection has been considered. It was shown that monomers and dimers can penetrate into enzyme molecules with formation complexes monomer — enzyme, dimer- enzyme. Moreover, transformation of probe fluorescence spectra is at each time moment. Spectrum maximum shift, and its form change. At a time, the immobilized dye dimers greatly impact to formation of end fluorescence spectrum. Well correlation between experimental and theoretical results confirms reality of the obtained data.

    Views (last year): 2. Citations: 3 (RSCI).
  5. Minkevich I.G.
    Stoichiometric synthesis of metabolic pathways
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1241-1267

    A vector-matrix approach to the theoretical design of metabolic pathways converting chemical compounds, viz., preset substrates, into desirable products is described. It is a mathematical basis for computer–aided generation of alternative biochemical reaction sets executing the given substrate–product conversion. The pathways are retrieved from the used database of biochemical reactions and utilize the reaction stoichiometry and restrictions based on the irreversibility of a part of them. Particular attention is paid to the analysis of restriction interrelations. It is shown that the number of restrictions can be notably reduced due to the existence of families of parallel restricting planes in the space of reaction flows. Coinciding planes of contradirectional restrictions result in the existence of fixed reaction flow values. The problem of exclusion of so called futile cycles is also considered. Utilization of these factors allows essential lowering of the problem complexity and necessary computational resources. An example of alternative biochemical pathway computation for conversion of glucose and glycerol into succinic acid is given. It is found that for a preset “substrate–product” pair many pathways have the same high-energy bond balance.

    Views (last year): 6. Citations: 3 (RSCI).
  6. Ougolnitsky G.A., Usov A.B.
    Game-theoretic model of coordinations of interests at innovative development of corporations
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 673-684

    Dynamic game theoretic models of the corporative innovative development are investigated. The proposed models are based on concordance of private and public interests of agents. It is supposed that the structure of interests of each agent includes both private (personal interests) and public (interests of the whole company connected with its innovative development first) components. The agents allocate their personal resources between these two directions. The system dynamics is described by a difference (not differential) equation. The proposed model of innovative development is studied by simulation and the method of enumeration of the domains of feasible controls with a constant step. The main contribution of the paper consists in comparative analysis of efficiency of the methods of hierarchical control (compulsion or impulsion) for information structures of Stackelberg or Germeier (four structures) by means of the indices of system compatibility. The proposed model is a universal one and can be used for a scientifically grounded support of the programs of innovative development of any economic firm. The features of a specific company are considered in the process of model identification (a determination of the specific classes of model functions and numerical values of its parameters) which forms a separate complex problem and requires an analysis of the statistical data and expert estimations. The following assumptions about information rules of the hierarchical game are accepted: all players use open-loop strategies; the leader chooses and reports to the followers some values of administrative (compulsion) or economic (impulsion) control variables which can be only functions of time (Stackelberg games) or depend also on the followers’ controls (Germeier games); given the leader’s strategies all followers simultaneously and independently choose their strategies that gives a Nash equilibrium in the followers’ game. For a finite number of iterations the proposed algorithm of simulation modeling allows to build an approximate solution of the model or to conclude that it doesn’t exist. A reliability and efficiency of the proposed algorithm follow from the properties of the scenario method and the method of a direct ordered enumeration with a constant step. Some comprehensive conclusions about the comparative efficiency of methods of hierarchical control of innovations are received.

    Views (last year): 9. Citations: 6 (RSCI).
  7. Kalashnikov S.V., Krivoschapov A.A., Mitin A.L., Nikolaev N.V.
    Computational investigation of aerodynamic performance of the generic flying-wing aircraft model using FlowVision computational code
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 67-74

    Modern approach to modernization of the experimental techniques involves design of mathematical models of the wind-tunnel, which are also referred to as Electronic of Digital Wind-Tunnels. They are meant to supplement experimental data with computational analysis. Using Electronic Wind-Tunnels is supposed to provide accurate information on aerodynamic performance of an aircraft basing on a set of experimental data, to obtain agreement between data from different test facilities and perform comparison between computational results for flight conditions and data with the presence of support system and test section.

    Completing this task requires some preliminary research, which involves extensive wind-tunnel testing as well as RANS-based computational research with the use of supercomputer technologies. At different stages of computational investigation one may have to model not only the aircraft itself but also the wind-tunnel test section and the model support system. Modelling such complex geometries will inevitably result in quite complex vertical and separated flows one will have to simulate. Another problem is that boundary layer transition is often present in wind-tunnel testing due to quite small model scales and therefore low Reynolds numbers.

    In the current article the first stage of the Electronic Wind-Tunnel design program is covered. This stage involves computational investigation of aerodynamic characteristics of the generic flying-wing UAV model previously tested in TsAGI T-102 wind-tunnel. Since this stage is preliminary the model was simulated without taking test-section and support system geometry into account. The boundary layer was considered to be fully turbulent.

    For the current research FlowVision computational code was used because of its automatic grid generation feature and stability of the solver when simulating complex flows. A two-equation k–ε turbulence model was used with special wall functions designed to properly capture flow separation. Computed lift force and drag force coefficients for different angles-of-attack were compared to the experimental data.

    Views (last year): 10. Citations: 1 (RSCI).
  8. Andreeva A.A., Nikolaev A.V., Lobanov A.I.
    Analysis of point model of fibrin polymerization
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 247-258

    Functional modeling of blood clotting and fibrin-polymer mesh formation is of a significant value for medical and biophysics applications. Despite the fact of some discrepancies present in simplified functional models their results are of the great interest for the experimental science as a handy tool of the analysis for research planning, data processing and verification. Under conditions of the good correspondence to the experiment functional models can be used as an element of the medical treatment methods and biophysical technologies. The aim of the paper in hand is a modeling of a point system of the fibrin-polymer formation as a multistage polymerization process with a sol-gel transition at the final stage. Complex-value Rosenbroke method of second order (CROS) used for computational experiments. The results of computational experiments are presented and discussed. It was shown that in the physiological range of the model coefficients there is a lag period of approximately 20 seconds between initiation of the reaction and fibrin gel appearance which fits well experimental observations of fibrin polymerization dynamics. The possibility of a number of the consequent $(n = 1–3)$ sol-gel transitions demonstrated as well. Such a specific behavior is a consequence of multistage nature of fibrin polymerization process. At the final stage the solution of fibrin oligomers of length 10 can reach a semidilute state, leading to an extremely fast gel formation controlled by oligomers’ rotational diffusion. Otherwise, if the semidilute state is not reached the gel formation is controlled by significantly slower process of translational diffusion. Such a duality in the sol-gel transition led authors to necessity of introduction of a switch-function in an equation for fibrin-polymer formation kinetics. Consequent polymerization events can correspond to experimental systems where fibrin mesh formed gets withdrawn from the volume by some physical process like precipitation. The sensitivity analysis of presented system shows that dependence on the first stage polymerization reaction constant is non-trivial.

    Views (last year): 8.
  9. Chernavskaya O.D.
    Dynamical theory of information as a basis for natural-constructive approach to modeling a cognitive process
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 433-447

    The main statements and inferences of the Dynamic Theory Information (DTI) are considered. It is shown that DTI provides the possibility two reveal two essentially important types of information: objective (unconventional) and subjective (conventional) informtion. There are two ways of obtaining information: reception (perception of an already existing one) and generation (production of new) information. It is shown that the processes of generation and perception of information should proceed in two different subsystems of the same cognitive system. The main points of the Natural-Constructivist Approach to modeling the cognitive process are discussed. It is shown that any neuromorphic approach faces the problem of Explanatory Gap between the “Brain” and the “Mind”, i. e. the gap between objectively measurable information about the ensemble of neurons (“Brain”) and subjective information about the human consciousness (“Mind”). The Natural-Constructive Cognitive Architecture developed within the framework of this approach is discussed. It is a complex block-hierarchical combination of several neuroprocessors. The main constructive feature of this architecture is splitting the whole system into two linked subsystems, by analogy with the hemispheres of the human brain. One of the subsystems is processing the new information, learning, and creativity, i.e. for the generation of information. Another subsystem is responsible for processing already existing information, i.e. reception of information. It is shown that the lowest (zero) level of the hierarchy is represented by processors that should record images of real objects (distributed memory) as a response to sensory signals, which is objective information (and refers to the “Brain”). The next hierarchy levels are represented by processors containing symbols of the recorded images. It is shown that symbols represent subjective (conventional) information created by the system itself and providing its individuality. The highest hierarchy levels containing the symbols of abstract concepts provide the possibility to interpret the concepts of “consciousness”, “sub-consciousness”, “intuition”, referring to the field of “Mind”, in terms of the ensemble of neurons. Thus, DTI provides an opportunity to build a model that allows us to trace how the “Mind” could emerge basing on the “Brain”.

    Views (last year): 6.
  10. We build new tests which permit to increase the human capacity for the information processing by the parallel execution of the several logic operations of prescribed type. For checking of the causes of the capacity increasing we develop the check tests on the same logic operations class in which the parallel organization of the calculations is low-effectively. We use the apparatus of the universal algebra and automat theory. This article is the extension of the cycle of the work, which investigates the human capacity for the parallel calculations. The general publications on this theme content in the references. The tasks in the described tests may to define in the form of the calculation of the result in the sequence of the same type operations from some algebra. If this operation is associative then the parallel calculation is effectively by successful grouping of process. In Theory of operations that is the using the simultaneous work several processors. Each processor transforms in the time unit the certain known number of the elements of the input date or the intermediate results (the processor productivity). Now it is not known what kind elements of date are using by the brain for the logical or mathematical calculation, and how many elements are treating in the time units. Therefore the test contains the sequence of the presentations of the tasks with different numbers of logical operations in the fixed alphabet. That is the measure of the complexity for the task. The analysis of the depending of the time for the task solution from the complexity gives the possible to estimate the processor productivity and the form of the calculate organization. For the sequence calculations only one processor is working, and the time of solution is a line function of complexity. If the new processors begin to work in parallel when the complexities of the task increase than the depending of the solution time from complexity is represented by the curve which is convex at the bottom. For the detection of situation when the man increases the speed of the single processor under the condition of the increasing complexity we use the task series with similar operations but in the no associate algebra. In such tasks the parallel calculation is little affectivity in the sense of the increasing efficiency by the increasing the number of processors. That is the check set of the tests. In article we consider still one class of the tests, which are based on the calculation of the trajectory of the formal automat state if the input sequence is determined. We investigate the special class of automats (relay) for which the construction affect on the affectivity of the parallel calculations of the final automat state. For all tests we estimate the affectivity of the parallel calculation. This article do not contained the experiment results.

    Views (last year): 14. Citations: 1 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"